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SUMMARY

Convolution operations are central to many technologically and scientifically important
applications such as convolutional neural networks (CNNs). In conventional implementations
of convolutions, the sequential nature of the associated inner product operations imposes
stringent limitations on the computational latency. In Fun-COMP we have demonstrated that
we can overcome this fundamental limitation by employing photonic in-memory computing. In
our approach the convolution operations are mapped to a sequence of matrix-vector multiply
(MVM) operations with a fixed matrix encoded in the phase configuration of phase-change cells
that form a matrix of interconnected photonic waveguides. MVM operations can then be
performed by feeding input vectors encoded as light amplitude into the waveguide array.
Furthermore, by harnessing the wavelength division multiplexing capability inherent to light,
it is possible to execute the MVM operations in parallel. By encoding the input vectors on
coherent frequency combs, we have experimentally demonstrated one such photonic processor
(a so-called photonic tensor core) operating at TeraMAC/s processing rates. Moreover, this
approach provides a pathway towards the realization of PetaMAC/s processing for demanding
Al applications such as autonomous driving, live video processing and next generation
information processing. In this report we describe the hardware that we have developed to
demonstrate this in-memory photonic MVM processing, and showcase some typical
applications of such hardware
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1 INTRODUCTION

Convolution operations are ubiquitous in application areas such as image processing, digital
data processing and computational physics. One of the most prominent recent applications of
convolution operations is in convolutional neural networks. CNNs have become a central tool
for many domains in computer vision, as well as for other essential modern-day applications
such as audio analysis in the frequency domain. In state-of-the-art CNNs, many convolution
“hidden layers” are applied to an input signal before feeding the processed data to fully
connected layers for classification (see e.g. In-Datacenter Performance Analysis of a Tensor
Processing Unit. Proc. ISCA’17 (2017)). The power of CNNs stems from the translation-invariant
weight sharing that significantly reduces the number of parameters needed to extract relevant
features from input modalities such as images. A schematic illustration of a CNN used for image
classification is shown in Fig. 1a. Each of the convolution layers takes in an input image,
performs the convolutional operations to extract features, and generates an output image. Fig.
1b shows one such convolution layer where the input image is of dimension nxn and has din
channels. If there are dour convolution kernels of size kxk the convolutional filter is of
dimension kxkxdin. and the resulting output image is of dimension (n-k+1)? with dout channels.
To perform each convolution operation, the filter is shifted step-by-step over the input image
and a pixel-wise multiply-accumulate (MAC) operation between the filter and the image is
carried out to calculate a single pixel of the output image. This corresponds to (n-
k+1)*xk2xdinxdout MAC operations per convolution layer, leading to a significant computational
bottleneck. This is a significant shortcoming when addressing computational tasks that
demand low computational latency such as autonomous driving, or require very high-
throughput inferences such as in data centers (see e.g. Deep residual learning for image
recognition. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 770-778 (2016)). One
alternative approach is to combine all the convolutional filters into a large filter matrix. As
depicted in Fig. 1c. the filter matrix will be of dimension (k*xdin) % dous, the input vectors will be
of dimension k*xdin and a single convolution operation involves (n-k+1) such MVM operations.

2 PHOTONIC ACCELERATOR

In Fun-COMP we experimentally demonstrate a photonic hardware accelerator for the
above described convolutional task, one which minimizes both latency and the movement
of data, by using non-volatile in-memory photonic MAC operations (see Feldmann, ],
Youngblood, N., Karpov, M. et al. Parallel convolutional processing using an integrated photonic
tensor core. Nature 589, 52-58 (2021)). Key to our approach is encoding fixed convolutional
kernels in the non-volatile configuration (i.e. the amorphous or crystalline phase) of integrated
phase-change material cells that couple evanescently to form a matrix of interconnected
photonic waveguides. First, we demonstrate how to perform MVM operations in the optical
domain using our photonic hardware. For example, in order to calculate the 3x3 MVM operation
shown at the top of Fig. 2a, the input vector is encoded in the amplitude of the optical signals
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sent to the different matrix inputs. The fixed matrix elements are encoded in the nonvolatile
state of chalcogenide phase-change material (PCM) cells (orange) fabricated on top of the
connecting waveguides (blue). Chalcogenide PCMs are a class of materials that exhibit a large
contrast of their optical properties between their amorphous and crystalline states. The
switching process between states, that effectively alters the absorption of light, can be induced
by optical pulses (or indeed by electrical or thermal excitation). This process is fast, reversible
and the PCM maintains its state at room temperature for many years without the need for an
additional power source (see e.g. Wuttig, M. & Yamada, N. Phase-change materials for
rewriteable data storage. Nat. Mater. 6, 824-832 (2007)). Moreover, intermediate phase-states,
between fully amorphous and fully crystalline, can be readily obtained by appropriate
excitations, giving access to multiple levels of optical absorption.
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Figure 1. Convolution operations a) The basic convolutional neural network consisting of several
convolution layers and a feedforward neural network. With this structure the number of training
parameters is significantly reduced, because of its translation-invariant shared weights b) An input
image with di, channels is convolved with d,.. kernels. Each convolution filter is of dimension kxkxd;, and
the obtained output images are of size (n-k+1)% c) The convolution operations described in b) can be
mapped into a sequence of matrix-vector multiply operations. The filters are combined to one larger filter
matrix. The filter matrix is sequentially multiplied by input vectors of dimension. The output vectors are
rearranged to get the results of the convolution operations.

The input vector is encoded in the amplitude of light on different wavelengths. The
amplitude of each wavelength represents one of the vector entries (A, B, C). Therefore, the input
vectors can be fed to the matrix by modulating the intensities of the different input wavelengths
with fast electro-optical modulators, providing access to very high data rates. The matrix itself
is designed as a waveguide crossbar array with additional directional couplers that equally
distribute the input power to all PCM-cells (the splitting ratios of the directional couplers are
indicated by the numbers shown next to the coupling areas in Fig.2a). By using different
wavelengths, unwanted interference inside the waveguides can be avoided and the summation
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of the individual products (of the matrix-vector multiplications) can be performed by adding
the light to the output waveguides also using directional couplers.

Figure 2b shows an optical micrograph of a fabricated 4x4 matrix. Essential chip regions
are magnified in the scanning-electron micrographs on the right. Coupling of light into the
optical chip is achieved using broadband total internal reflection (TIR) couplers (bottom right
Fig. 2b). The PCM-cells (of area 3x3 um?) acting as the matrix elements are deposited on top of
waveguide crossings (Fig, 2b top right). Each individual matrix cell has three additional grating
couplers used to optically address the PCM. By sending pulses (via the middle coupler) to the
waveguide directly leading to the PCM cell on the crossing, it can be optically switched for
programming each matrix element (i.e. setting the desired crystalline/amorphous state
required to store a matrix element). In addition to substantial benefits in modulation speed (for
changing the vector inputs), an optical implementation of a matrix-vector multiplier allows the
harnessing of wavelength division multiplexing (MUX) to execute parallel MVM operations. In
particular, as Fig. 2c explains, the same matrix can be used to process several input vectors at
the same time when all the individual vectors are encoded on different wavelengths. For the
4x4 matrix example shown in the figure, and the processing of four input vectors per time step,
sixteen different wavelengths are needed. In the Fun-COMP hardware demonstrator these
wavelengths are generated using a single soliton state of a frequency comb which is fed into a
demultiplexer to split up the individual wavelengths (A1-A16). After manipulating the amplitude
of each comb line individually (according to the value of the input vectors) by using variable
optical attenuators (VOAs), the corresponding entries of each vector are multiplexed back
together (i.e. A1, As, A9, A13) and sent to the matrix input. After propagating through the filter
matrix all output waveguides of the matrix contain all 16 input wavelengths. Proper
demultiplexing and combining of the wavelengths corresponding to the individual vectors
yields the convolution results that can be measured with photodetectors. In the current
example, 16 inner-product operations (four kernels applied to four input vectors) are carried
out in a single time step. Depending on the number of lines available in the frequency comb, the
multiplexing scheme can be extended further leading to significant speed gains as compared to
electronic processors.

To illustrate experimentally the principle outlined above, the convolution of an input
image depicting a handwritten “4” (Fig. 3a) is performed using four 3x3 image kernels
(resulting in a 9x4 filter matrix) and a single vector (9x1) per time step (Fig. 3b-e). The
individual wavelengths are generated using a frequency comb that is operated in the single
soliton state and separated using a fibre-based multiplexer. The image kernels applied in this
example are chosen for edge detection and are shown below the output images. The edge
features are strongly visible. Fig. 3f shows an experimental example of a convolution operation
which was performed without any electrical post processing. Here, a 3x3 kernel (emboss filter)
was applied using a 9x2 matrix, with one column for the image kernel and one column for the
reference. The original image is shown on the left, while the experimental output image after
the convolution operation is shown in the middle panel. From comparison with the calculated
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expected output on the right, it can be seen that the on-chip matrix also performs well without
the need for any post-processing step.
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Figure 2. The Fun-COMP photonic tensor core hardware for convolution operations a) Basic
matrix-vector multiplication: A vector is encoded in the amplitude of light pulses on different wavelengths
and send to the corresponding matrix input waveguides. The matrix elements are inscribed in the state of
phase-change material patches on the waveguides. The splitting ratio of the directional couplers
(indicated by the numbers) is chosen such that the same fraction of the light for each input reaches the
output. b) Optical micrograph of a fabricated 4x4 matrix with 3D printed input and output couplers to
enable broadband operation. The close-up SEM images on the right show the 3D printed couplers
(bottom) and the waveguide crossings with the PCM (top) in more detail. c¢) Sketch of the multiplexed all-
optical matrix-vector multiplication. The input vectors are generated from lines of a single-solition
frequency comb using a multiplexer (MUX) and variable optical attenuators (VOAs). The entries of
different input vectors are grouped together again employing wavelength multiplexing and send to the
on-chip MAC-unit that performs the calculations. After sorting together, the correct wavelengths with
optical demultiplexers (DEMUX) the multiplication results are be obtained. Note that in the given

example four kernels and four input vectors are operated at once, resulting in 64 MAC-operations per
time step.
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original

Figure 3. Convolution using sequential MVM operations. a-e) Experimental result of convolving a
128x128 pixel image showing a handwritten digit (a) with four image kernels of the size 3x3
(corresponding to a 9x4 convolution matrix). The kernels are chosen to highlight different edges of the
input image. f) Convolution operation with a 3x3 sized image kernel (i.e. emboss filter) without electrical
post-processing. The image on the left shows the original image while the other two depict the
experimental and the calculated (correct) result.

We also experimentally performed the task of MNIST (a commonly utilized benchmarking
database) digit recognition with a CNN, as illustrated in Fig. 4. The CNN employed in our
experiments consists of the input layer taking the pixel data (28x28 pixels, single-channel) that
is then passed to a convolution layer consisting of four 2x2 kernels plus subsequent Rectified
Linear Unit activation, resulting in an output of dimension 27x27x4 (valid padding). The output
from the convolution step is flattened and fed to a fully connected layer with ten neurons. The
probabilities for every digit are obtained from the final classification using the softmax function.
The network was trained via software and the weights of the filter kernels were programmed
to the states of the PCM-cells in the on-chip matrix. The experimental implementation of the
CNNreached an accuracy of 95.3% showing good agreement with the calculated prediction
accuracy of 96.1%.

To estimate the ultimate performance capabilities of the system, we explored the scaling
capabilities in terms of matrix size, modulation speed, and the number of parallel vectors.
Benchmarking projections show that our Fun-COMP memcomputing hardware has a MAC rate
that is around ten to twenty times faster than modern electronic CPUs, GPUs, etc. (including
~30 times faster than Google’s work-horse TPU), many orders of magnitude faster than
electronic neuromorphic implementations (e.g. 1000 times faster than HICANN) and as fast as

other photonic neuromorphic systems currently in development. Moreover, the energy
7
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consumed per MAC using the Fun-COMP approach is already ‘best in class’ (e.g. at 0.04 p] some
500 times less than state-of-art GPUs and 5000 times lower than HICANN) and the
computational density is (in spite of the relatively large size of integrated photonic
components) also projected to be better than all other relevant technologies. The comparisons
are illustrated in Fig. 4e (i-iii). Note that these are some remarkable improvements, given this
is only the first instance of our demonstration of this exciting new technology.

Input layer Convolution + RelU Flatten  Fully connected
Q 1
* uy QO 2
a 770 3
* " 8 Softmax
N
O
* . O
20 8
* [l N\ 9
0
4 kernels 2x2 &
28x28x1 27 x27 x4 2916 x 1 10x1 Result
C Label Label d
0123456789 0123456789 10
0 g '
1 1 N 08
c 2 . 2 . °
o L
£:| m )| @ S 0
g = 4 = g
9 5 " 5 0.4
£ = s
6 o7.1] 6 =
0.2
—— 500 um 7 . 7 .
8 I = 09 .
9 o o ﬂ 00 02 04 06 08 10
- Expected
Calculated Experiment
'
e ici Computing densit
e MAC rate 10 Energy efficiency 10* puting Y
A b 10%
’: —_—
£ E
'§ 10° Q 10' E
-3 s 2
; > :100
8 & <
T 10° 10 E
4 102
10* 10
L O % % % %k % % % Y 10 P 4 % m %
%, o, %y ey, G,y Rty Oy 2 2, B S % o Wy % % % P e %, %, %, % %, %, %, %, % %
Yoy %, %p o, T %, 0, O Q) o % 00 T, M By, % % O Y %, % %, Ty, %, %, %, o,
//o/:o/;éo,qufr,d%%o,,’% /)001,:,74 %o %o Cs M Y % o%,»o,’/pe,,.o,ro,ro@o,,’
v ¥y %, %, %, %, i oy, %, 5, %, N
%, 2, % % 8, 9, %, % S % s, %,
%, %, % % %, L. %, % RO N
Y, 1%; %, ""o; Y, % % % ”"4, /"/J;v L"g

Figure 4. a) Optical micrograph of a fabricated matrix of size 16x16. b) Digit recognition with a
convolutional neural network and scalability. Layer structure of the network used to test the photonic
tensor core with the MNIST handwritten digits database. c) Confusion matrices showing similar
performance for the prediction results for the experimental (95.3%) and calculated CNN (96.1%). d)
Calculation accuracy for 100,000 MAC operations multiplying a vector of nine entries with a fixed matrix.
Inset: Histogram of the data revealing a standard deviation of 0.008 and therefore a resolution of 5 bit. e)

Comparison of basic computer performance for a range of computer architectures, including FunCOMP’s
photonic accelerator.
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3 CONCLUSION

In Fun-COMP we have demonstrated a photonic accelerator (tensor core) capable of operating
at the speed of 2 TMAC/s. Using phase-change materials as nonvolatile matrix elements, no
power is required for preserving the matrix state during operation. As the convolution
operation is a passive transmission measurement, the calculations can in theory be performed
at the speed of light at very low power, experimentally limited by the modulation and detection
bandwidths. Making use of the wavelength division multiplexing capabilities inherent to all-
optical systems, the presented architecture promises a significant speed up compared to
electronic devices, as several pixels or even complete images can potentially be processed in a
single time step, effectively removing the computing bottleneck in CNNs for live video
processing. All in all, our results demonstrate that a reconfigurable photonic platform for
implementing convolution operations can greatly reduce latency in CNNs, which has significant
implications for applications requiring very high-throughput inferences.



