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Summary 

In this deliverable we present the most relevant aspects and steps of Fun-COMP 
research on the development of a self-learning reservoir computing system based on an 
integrated photonic network containing phase change material cells (N-vN unit cells).  

In Section 1 we discuss the reasoning behind our choice of the type of photonic network 
we planned to fabricate and investigate, together with the main functional requirements 
we aimed to achieve. 

In Section 2 we focus on the main building block for our plastic reservoir network. In 
particular, we describe the development of a new numerical model to simulate the 
device in a modular and efficient way. Moreover, we show that our simulations predict 
that significant improvements in energy efficiency and contrast of memory operations 
can be achieved by suitably choosing the design parameters of the device, allowing us to 
build more scalable plastic photonic networks. 

In Section 3 we discuss about system-level simulations of our plastic reservoir 
networks. In particular, we present a novel scalable training method to improve the 
performance of our reservoir system by means of plasticity. 

In Section 4 we describe the design, fabrication and measurement of several versions of 
the main building block device for our reservoir network.  

In Section 5 we describe the design and successful fabrication of several plastic 
reservoir network versions.  

In Section 6 we summarize the main conclusions regarding the work presented in this 
deliverable. 
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1 RATIONALE FOR THE DEVELOPMENT OF THE PLASTIC PHOTONIC NETWORK 

FOR SELF-LEARNING RESERVOIR COMPUTING  
In the past decade, the Fun-COMP partners IMEC have been investigating and developing 
reservoir computing23 (RC) systems based on passive photonic networks on a silicon chip456. The 
reservoir in these systems is based on multiple input and output ports (consisting of grating 
couplers) connected by waveguides, splitters and combiners, so to form a network where the 
input optical signal interferes with multiple delayed versions of itself (an example is schematized 
in Fig. 1).  

 

Figure 1. Schematic of the passive integrated photonic RC system. Input optical signals can be inserted in the chip (grey area, 
black arrows and circles show the network topology) through grating couplers. The photonic circuit splits the input signal, 
delays the different splits (through long waveguides folded into spirals) and recombines the differently delayed versions of 
the input signal at the network nodes, so that they optically interfere. The resulting signal at some nodes is read out (optical 
outputs) by fast detectors that measure the time-dependent optical signal intensity. These intensity measures are directly  
fed into a ML linear classifier or regressor (one layer of neurons) that is trained to carry out a given task on the input signal. 

The connections in this type of network are fixed and, because of fabrication errors, they cannot be 
predicted before fabrication. Therefore, at different output ports, different representations of the 
input signal are obtained, due to the different ways the original input signal interferes with itself at 
different nodes of the network. The signal collected at the different reservoir outputs is then fed into 
a linear readout, i.e. a linear regressor or classifier (that can as well be considered as a single layer of 
neurons of an artificial neural network), which is trained to carry out a chosen machine learning (ML) 
task on the input signal, such as bit sequence classification, Boolean operations with memory or 

                                                           
2  Tanaka, Gouhei, Toshiyuki Yamane, Jean Benoit Héroux, Ryosho Nakane, Naoki Kanazawa, Seiji Takeda, 
Hidetoshi Numata, Daiju Nakano, and Akira Hirose. "Recent advances in physical reservoir computing: A review." 
Neural Networks 115 (2019): 100-123. 
3  An introduction on the topic is provided in the public deliverable D3.1: “A new approach to reservoir 
computing”. 
4  Vandoorne, Kristof, Pauline Mechet, Thomas Van Vaerenbergh, Martin Fiers, Geert Morthier, David 
Verstraeten, Benjamin Schrauwen, Joni Dambre, and Peter Bienstman. "Experimental demonstration of 
reservoir computing on a silicon photonics chip." Nature communications 5, no. 1 (2014): 1-6. 
5 Sackesyn, Stijn, Chonghuai Ma, Joni Dambre, and Peter Bienstman. "Experimental realization of integrated 
photonic reservoir computing for nonlinear fiber distortion compensation." Optics Express 29, no. 20 (2021): 
30991-30997. 
6  Ma, Chonghuai, Joris Lambrecht, Floris Laporte, Xin Yin, Joni Dambre, and Peter Bienstman. "Comparing 
different nonlinearities in readout systems for optical neuromorphic computing networks." Scientific Reports 11, 
no. 1 (2021): 1-8. 
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telecom signal equalization. The role of the reservoir is to enhance the effective computational power 
of the trained readout, by increasing the dimensionality of the original input signal (e.g., in Fig. 1, one 
time-dependent input is transformed into four time-dependent representations) and by introducing 
memory into the system. In particular, in the discussed passive integrated type of photonic reservoir, 
memory is provided by optical delay lines (long waveguides folded into spirals) that connect the 
different splitters and combiners. The main advantages of employing a passive photonic circuit as 
reservoir is that it does not actively consume energy (although the input signal undergoes significant 
power losses while propagating through the network) and that it can operate at extremely high speed 
(limited only by the time of travel of the light through the circuit). On the other hand, a passive circuit 
can only perform linear optical operations and thus the required nonlinearity (to expand the 
dimensionality of the input signal) is only given by the detectors at the readout, which transform an 
optical signal (characterized by amplitude and phase) into an electric one, proportional to the optical 
intensity. The RC system therefore represents a shallow artificial neural network (ANN), as opposed 
to deep ANNs where nonlinear nodes are cascaded, forming multiple layers. Generally, a deep 
nonlinear architecture is more powerful in creating diverse representations of the input using a limited 
number of connections and nodes, which often translates into a higher computational power. 

In Task 3.1 of the Fun-COMP project we aimed to enhance a photonic reservoir by introducing the all-
optical non-volatile memory provided by the N-vN unit cells (i.e. waveguide segments covered by a 
thin film of phase-change material, namely here the Ge2Sb2Te5 alloy, or GST for short). In particular, 
we want this non-volatile memory to be accessible by the same input signal that we want to process 
via our ML system, as opposed to an external tuning of the memory elements. That is, we want the 
input signal to reach the N-vN cells in the reservoir circuit with enough power to change the memory 
state (i.e. the solid-phase state of the GST thin films). This would allow our enhanced reservoir to 
plastically adapt its internal connections to its input: we would thus introduce the plasticity property 
into our ML system. Such a condition is key to achieve self-learning, i.e. the ability to improve the 
performance on a ML task without explicitly and externally tuning the parameters to be learned, such 
as the synaptic weights in the case of an ANN. Importantly, our brain learns by means of plasticity and 
self-learning, therefore we know that these properties can potentially enable us to overcome the 
scalability limitations of today’s neuromorphic computing systems, which heavily rely on the non-
biologically-plausible backpropagation training algorithm78.  

However, there are two main issues that prevent us to readily insert the N-vN unit cells into the 
described integrated passive photonic reservoir to obtain a plastic RC system: 

 The first issue is that the passive integrated reservoir (e.g. see Fig. 1) operates much faster 
than the N-vN cell. Indeed, the maximum time scale of the first is given by the maximum length 
of the delay lines connecting the optical nodes, while the minimum time scale of the latter is 
given by how fast the solid-state phase of the GST on a silicon waveguide can be changed by 
a realistic optical input signal (the time scale is from tens to hundreds of nanoseconds9). In 
order to match the time scales of the two devices, way too long optical delay lines would be 

                                                           
7 Whittington, James CR, and Rafal Bogacz. "Theories of error back-propagation in the brain." Trends in cognitive 
sciences 23, no. 3 (2019): 235-250. 
8 Taherkhani, Aboozar, Ammar Belatreche, Yuhua Li, Georgina Cosma, Liam P. Maguire, and T. Martin McGinnity. 
"A review of learning in biologically plausible spiking neural networks." Neural Networks 122 (2020): 253-272. 
9 Li, Xuan, Nathan Youngblood, Zengguang Cheng, Santiago Garcia-Cuevas Carrillo, Emanuele Gemo, Wolfram 
HP Pernice, C. David Wright, and Harish Bhaskaran. "Experimental investigation of silicon and silicon nitride 
platforms for phase-change photonic in-memory computing." Optica 7, no. 3 (2020): 218-225. 
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required in the passive reservoir, causing the optical connections to be too lossy and to occupy 
a too large chip area. 

 The second issue is that significant optical power is always lost at the combiners of the optical 
nodes in the passive reservoir, due to interference. This makes it very challenging to introduce 
several N-vN cells (that also are significantly lossy) in a large passive reservoir, since enough 
optical power must reach all the N-vN cells and the RC readout. This considerably limits the 
scalability of a plastic passive reservoir. 

It should be noted that both issues specifically originate from the requirement of plasticity and could 
otherwise be circumvented if we allowed ourselves to externally tune the memory state of the N-vN 
unit cells.  

To solve these problems, we consider an integrated optical reservoir based on a network of silicon 
ring resonators (RRs, see schematic in Fig. 2) instead of the passive reservoir architecture. 

 

Figure 2. Schematic of the proposed silicon RR optical network for integrated plastic RC with PCM. Several RRs are coupled 
by straight silicon waveguides. Those RRs that do not comprise a N-vN cell (GST layer) are used to provide volatile memory 
and nonlinearity via silicon nonlinear effects (thus they can be seen as neurons of a RNN). Those RRs combined with PCM 
cell, instead, provide all-optical non-volatile memory to the circuit, and thus plasticity (they can be seen as connections with 
plastic synaptic weights). The small waveform plots at the bottom exemplify how a RR can nonlinearly transform an input 
sequence of optical pulses. 

The first of the aforementioned issues is then solved by employing silicon nonlinear effects (based on 
temperature and free carrier concentration of a silicon waveguide) to provide the network with the 
required volatile memory for RC operations, instead of the optical delay lines in the passive reservoir 
architecture. In particular, a strong enough light pulse exciting a silicon RR can increase the 
temperature and free carriers concentration in the ring waveguide, which can in turn modify the RR 
resonance properties and thus the way the light is transmitted by these devices. After the optical 
excitation of a RR, the consequent perturbation in temperature and free carrier concentration relaxes 
with characteristic times of, respectively, around 5ns and 100ns. Importantly, these are well 
comparable with the characteristic times of all-optical memory operations in a N-vN cell. In addition 
to provide volatile memory, the silicon RRs are also nonlinear nodes and can be considered as neurons 
of an ANN with memory, i.e. a recurrent neural network (RNN). The presence of multiple layers of 
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neurons, as previously discussed, is expected to provide a significant advantage in computational 
power w.r.t. the passive reservoir case.  

The latter of the aforementioned issues is addressed by combining a N-vN unit cell with a silicon RR to 
form a plastic synapse with improved energy efficiency (for brevity, from now on we will refer to this 
device as the plastic node). Although such a device is structurally the same as what we call (in the 
context of Fun-COMP project) the extended N-vN unit cell, it is functionally different: instead of being 
used and optimized to mainly provide a means for wavelength division multiplexing, it is used and 
optimized to enhance energy efficiency and cascadability of non-volatile memory operations, that is 
in order to provide a more scalable source of plasticity. In particular, thanks to its resonant behaviour, 
the silicon RR presents an enhanced sensitivity to the state of the GST deposited on its waveguide. 
This allows us to obtain a sufficient output contrast (i.e. the difference in the RR optical output due to 
different memory states) from a significantly shorter GST cell, which in turn requires less optical 
energy to be switched from a solid-state phase to another. Further details can be found in our recently 
published article10. At the same time, using this type of plastic node coupled with other silicon RRs 
(e.g. as in Fig. 2) provides a way for the optical input power to reach and change the memory state of 
N-vN cells that are located far away and deep in the network. Indeed, the plastic node can be designed 
so that an optical pulse that changes its memory state can also shift the resonance wavelength away 
from the input wavelength (because of the aforementioned silicon nonlinear effects). This means that, 
for a certain time after its excitation, the node does not disrupt the passage of subsequent input pulse, 
which can therefore reach the next RRs in the series, and so on. 

Finally, the configuration space of the proposed plastic reservoir is greatly expanded by the strong 
sensitivity of RRs to the wavelength of input light. Indeed, for very close wavelengths, e.g. with 
differences of just 0.01nm, the network can behave very differently. Thus, in principle we obtain many 
different network topologies corresponding to different input wavelengths. Moreover, thanks to the 
wavelength multiplexing capability of RRs (RRs have quasiperiodic resonance wavelengths in the 
frequency domain) these different network topologies can be connected to one another by means of 
the silicon nonlinear effects, thus potentially forming a network much larger than the physical one, 
without increasing the on-chip footprint. Indeed, two different resonant wavelengths can be coupled 
in a RR because both affect and are affected by the temperature and the free carrier concentration of 
the same ring waveguide. 

2 SILICON RING RESONATOR WITH GST CELL: AN EFFICIENT AND SCALABLE 

PLASTIC NODE  
In this section we will present the theoretical and numeric investigation of the plastic node introduced 
in the previous section. Such a plastic node consists of a silicon RR with a GST cell on its waveguide 
(extended N-vN configuration) that is specifically designed so that its resonance properties 
(dynamically affected by silicon nonlinear effects) improve the energy efficiency of memory 
operations and the cascadability of several plastic nodes in a network. Here we present the main 
results, while more details can be found in the article10 that we have recently published together with 
the Fun-COMP EXETER partners. 

                                                           
10 Alessio Lugnan, Santiago García-Cuevas Carrillo, C. David Wright, and Peter Bienstman, "Rigorous dynamic 
model of a silicon ring resonator with phase change material for a neuromorphic node," Opt. Express 30, 25177-
25194 (2022) 
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We developed a numerical model to simulate the dynamical behaviour of the plastic node, by 
combining two pre-existing numerical models:  

 the compact behavioural model of the basic N-vN unit cell (developed by EXETER partners and 
presented in Deliverable D1.6 and in11) whose parameters are adapted to the silicon platform 
case;  

 a nonlinear RR model based on the temporal couple mode theory (TCMT), which we adapted 
to the specific case of our plastic node by properly accounting for the high absorption and 
asymmetry in the ring due to the phase change material.  

In particular, we were interested in developing a modular model that can easily be used as building 
block in larger circuit simulations, comprising several photonic devices. For this purpose, we also 
restructured the optical equations so that we could efficiently employ our model in a modular way 
within a commercial software for system-level photonics simulations (Luceda Caphe). 

The main input and output quantities of the basic N-vN cell model are respectively the input optical 
power and the complex effective index of the waveguide covered with PCM (GST). Therefore, keeping 
in mind the configuration we want to simulate, the simplest way of combining this model with a RR 
model is to run the two models in parallel so that, at each time step, the RR provides the input optical 
signal to the GST waveguide segment, which in turn updates its complex effective index. In this case, 
a change in complex effective index of the ring waveguide segment simply results in a variation of the 
attenuation and of the phase shift of the light passing through it, respectively resulting in a change of 
width and position of the RR resonance peak in the frequency domain. Also note that the complex 
refractive index provided by the GST model depends both on the corresponding temperature at that 
location of the waveguide, and on the degree of amorphization of the GST layer. 

2.1 ENERGY EFFICIENCY AND SPEED IMPROVEMENT OF MEMORY OPERATIONS 
By accounting for silicon nonlinear effects, which shift the RR resonance wavelength during the 
excitation by pump pulses, our model allows to predict the optimal RR power coupling coefficients 
(i.e. how much each ring is coupled to the straight waveguides, see Fig. 2) and wavelength detuning 
(i.e. the difference between resonance wavelength and input laser wavelength) that maximizes energy 
efficiency of memory operations. Such a prediction can provide important qualitative insight, but also 
quantitative insight once accurate model parameters are experimentally obtained. 

We run several simulations with different values of GST cell length, input pulse power, RR coupling 
coefficients and wavelength detuning. We found that a favourable GST cell length is 0.7µm. Setting 
the GST cell to this length, the minimum pulse power required to reach the maximum amorphization 
fraction is around 26mW with 10ns duration (see Fig. 3 (a) for the full parameter sweep results). 
Clearly, this type of information could not be obtained from simulations that do not account for the 
relevant nonlinear dynamics. For example, without nonlinear dynamics, the resonant wavelength of 
the RR would be fixed and therefore we would wrongly obtain that a null wavelength detuning 
optimizes the energy efficiency of memory operations.  

Furthermore, employing the same optimal parameters and after an exhaustive exploration of different 
input pulses combinations, we found that full recrystallization (i.e. nullifying the maximum achievable 
amorphization) could be obtained by inserting four pulses of 10ns duration: the first of around 23mW 
                                                           
11 Carrillo, Santiago García-Cuevas, Alessio Lugnan, Emanuele Gemo, Peter Bienstman, Wolfram HP Pernice, 
Harish Bhaskaran, and C. David Wright. "System-level simulation for integrated phase-change photonics." 
Journal of Lightwave Technology 39, no. 20 (2021): 6392-6402. 
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and the others of around 7mW. The aforementioned input pulses for amorphization and crystallization 
are shown in Fig. 3 (b), and the corresponding temporal evolution of the states in the developed model 
is represented in Fig. 3 (c). In order to obtain access to the steady state values without running the 
simulation for an unnecessary longer time, we forced the volatile variables back to their initial values 
after the amorphization and crystallization pulses (artificial cooldown), which has the same effect of 
waiting until the system reaches its equilibrium again. 

 

Figure 3 (adapted from10). (a) Colormap of the GST amorphization fraction as a function of resonance wavelength detuning 
and of the RR power coupling coefficient. An optical pulse of 10ns duration and around 26mW power was considered for 
amorphization. (b) Inserted pulse sequences for fast and energy efficient amorphization (1st pulse) and subsequent 
crystallization of the GST cell. (c) Corresponding time evolution of the model states during the insertion of the amorphization 
and crystallization pulse sequences, in (b). 

We made a comparison between these simulation results and the results from the employed basic N-
vN cell model (straight Si waveguide with 4μm GST cell, validated by fitting the experimental data 
reported in9). With such a comparison, we aim to show, at least qualitatively, the advantages enabled 
by the RR resonance in terms of speed and energy efficiency of memory operations. To start with, the 
maximum transmission contrast achieved with our plastic node model is around 15% considering a 
single input. To obtain such a contrast value, we considered an input amorphization pulse of 10ns 
conveying only around 0.26nJ energy, while full recrystallization is achieved within 70ns with less than 
0.5nJ. In comparison, to achieve a similar contrast considering the basic N-vN cell model (based on 
straight silicon waveguide), a 100ns long amorphization pulse with energy of 1.6nJ is required. This 
shows that, thanks to the RR resonance, both speed and energy efficiency of memory operations are 
substantially improved. Moreover, to obtain the same amorphization length of around 543nm, the 
GST on waveguide model requires a pulse more than 50% longer (using the same peak optical power) 
and it only achieves less than 3% transmission contrast, compared to around 15% for the RR device 
case. This result indicates that the optical resonance improves memory operations by reducing the 
energy required to amorphize the GST and, at the same time, by enhancing the sensitivity to changes 
in GST material phase distribution. In addition, the same input pulse that causes the maximum 
contrast in the case of the simulated RR with GST, is not able to modify the GST crystallinity fraction 
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in the case of its straight waveguide counterpart (see Fig. S4 (c) in the supplemental document). 
Finally, full recrystallization in the straight waveguide simulation is achieved employing a double-step 
pulse (as in9) 530 ns long and with total energy of more than 3.9nJ. Also in this case, the RR enables a 
significant improvement in both speed and energy efficiency. 

2.2 CONTRAST AND ENERGY EFFICIENCY OF READING THE MEMORY STATE 
 The observed large advantage in terms of speed and energy efficiency of memory operations is 
relevant only if the memory state can be easily read and used to control subsequent photonic 
operations. In order to take this aspect into account, in addition to calculating the transmission relative 
contrast (i.e. the difference in transmitted power after and before amorphization, divided by the latter 
value), we also consider the corresponding transmission absolute contrast (i.e. the same difference in 
transmitted power but divided by the input power), for each output port. The latter provides 
important information regarding the optical loss of the memory state reading, as it is relative to the 
total input power. 

Moreover, we also monitor the phase contrast (i.e. the difference in optical phase of the output after 
and before amorphization, divided by π), which can be converted into transmission contrast through  
optical interference. In particular, if the memory device is used as a component of a coherent optical 
circuit, e.g. as non-volatile weight or as plastic synapse for neuromorphic computing, having a high 
enough phase contrast can be key, even if the transmission contrast is low. Finally, in order to measure 
the optical loss corresponding to the phase contrast, we also monitor the transmission of each output 
port after amorphization (given by the fraction of the output power w.r.t. the total input power). 

We explored how these measures vary in different configurations by performing, as before, a 
parameter sweep in coupling coefficient and resonance wavelength detuning, but this time using 
constant low optical power as input, so as to leave the RR in the linear regime. At first, we considered 
a single input port and, considering the two extremes in the achievable crystalline fraction range of 
the GST cell, we obtained a maximum transmission relative contrast of around -15% (Fig. 4 (a)) at the 
through port (that is the output port on the straight waveguide where input is inserted), whose 
absolute value is very similar to the maximum value reported for a straight silicon waveguide with 
GST9. The drop port (that is the output port on the straight waveguide opposite to the input 
waveguide) shows a maximum value of around 21%, with the high contrast area in the parameter 
space not well overlapping with the through port case. But for both output ports, the transmission 
absolute contrast is always below 3.5% in absolute value (Fig. 4 (b)). This indicates that accessing the 
memory state in the linear regime is quite inefficient in terms of energy. Considering this input 
configuration, the phase contrast was negligible. 
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Figure 4 (adapted from10). (a), (b), (c), (d): Colormaps showing the results of the performed parameter sweeps in wavelength 
detuning and coupling coefficient, at the through port of the simulated RR with GST. (a) and (b): Transmission relative (and 
absolute, respectively) contrast when a single input port is excited. (c) and (d): The same quantities when both input ports 
are excited with same power and phase. The considered RR resonance has even azimuthal number. (e): Results of two time-
dependent simulations, one for crystalline (red) and the other for amorphized (blue) GST cells, of the silicon photonic circuit 
schematized in the inset of the top plot. From top to bottom, plots showing input optical power, output power and optical 
phase at through and drop ports, as a function of time.  

Nevertheless, we found that the achievable contrast values can be significantly increased by exploiting 
the enhanced sensitivity of interference effects in a RR. In particular, by inserting the same constant 
optical power in both input ports (on opposed straight waveguides), we achieved transmission relative 
contrasts up to 280% at through port (Fig. 4 (c)) and up to 350% at drop port. Still, we notice that the 
access to the memory state is not energy efficient, being the transmission absolute contrast not higher 
than 2.5% in absolute value (Fig. 4 (d)). Moreover, it should be stressed that when two inputs are 
considered, very different responses are obtained depending on whether the resonance azimuthal 
number is even or odd. In this case we considered an even azimuthal number, namely 164. This value 
is found by setting the resonance wavelength to 1550nm and the RR radius to about 15nm. 

Another way to enhance the impact of the GST crystalline fraction on the response of a photonic 
circuit, is through the excitation of dynamics provided by nonlinear optical cavities. To show this for 
the first time, we employed our model as a building block of a small network of four RRs (Fig. 4 (e)), 
two of which with a 0.7μm GST cell. The execution of the 1μs simulation (more than 330,000 time 
steps) required less than 40s on a fairly standard desktop computer (processor: Intel(R) Xeon(R) CPU 
E5-2650L v3 @ 1.80GHz) employing up to around 0.5 GB of RAM. The two RRs without GST have a 
relatively small power coupling coefficient (around 4%), so that the power enhancement in the ring 
waveguide allows to trigger nonlinear effects without reaching input power levels that can change the 
GST memory state. Considering suitable design parameters for this novel device, we obtained strong 
contrast in the time-dependent network response, both in terms of output power and optical phase 
(Fig. 4 (e)). Importantly, it should be noticed that this is achieved with relatively low overall power 
loss. In particular, such an effect is relevant for building plastic recurrent NNs, where the network 
topology is expanded along the time dimension, and where we believe the potential of the modelled 
device can be exploited at its fullest.  
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3 SYSTEM-LEVEL SIMULATIONS: A SCALABLE ON-CHIP TRAINING APPROACH 
In this section we propose and investigate, by means of numerical system-level simulations, a novel 
on-chip training approach based on plasticity, to optimize the non-volatile weights (given by the 
memory states of the aforementioned plastic nodes) of our plastic RC system. The proposed training 
method does not require to tune the network weights one by one nor to observe the internal states, 
but it only requires to update the input optical signal on the basis of the optical output of the reservoir. 
Therefore, it potentially overcomes the scalability limitations suffered by other common training 
approaches, such as the ones based on backpropagation. It should be stressed that, in order to provide 
accurate quantitative predictions, our plastic node model should be first fit and validated using direct 
experimental data. Instead, in our model we employ experimentally validated parameters for the basic 
N-vN unit cell model and the nonlinear silicon RR model separately. Nevertheless, the presented 
simulations provided important qualitative insight, useful to design the final hardware demonstrator 
for a self-learning photonic RC system. 

We simulated several variations of photonic dynamical networks like the one in Fig. 2 by just  
connecting together many instances of our plastic node model (described in the previous Section), 
within the Luceda Caphe simulator framework. It is sufficient to set the GST cell length to zero to 
obtain a silicon RR building block without PCM cell. The parameter space corresponding to different 
possible versions of simulated networks is extremely large: we can sweep over the distance between 
the RRs w.r.t. their radius, the number of node rows and columns, the number and position of RRs 
with GST cell w.r.t. the ones without GST cell, the characteristics of single nodes such as coupling 
coefficient and GST cell length, and so on. For this reason, it was impossible to perform an exhaustive 
parameter exploration without limiting the number of RRs too much. Still, we explored different 
network versions trying to achieve a good balance between plasticity and nonlinearity (the RRs with 
GST cells have weaker nonlinear behaviour because the PCM cell introduces a significant power loss). 
For our numerical proof of concept, we selected the network version schematized in Fig. 5. 

 

Figure 5. On top: schematic of the plastic reservoir network employed to obtain the presented system-level simulation 
results. Arrows pointing towards the straight waveguides indicate the input ports; arrows pointing outwards indicate the 
output ports, whose optical intensity is acquired by simulated detectors and sent to a linear classifier (logistic regression with 
optimized L2 regularization strength), in accordance with the RC paradigm. At the bottom: example of optical input power 
as a function of time. 15 different types (classes) of 5 optical pulse sequence are inserted with random order. An artificial 
cooldown between each input sequence simulates the case where the sequences are separated by a time interval that is 
long enough for the system to reach thermal equilibrium. 

At the input ports of the simulated network we continuously insert 15 different  types (classes) of 5 
optical pulse sequences in random order, one after another. Thermal equilibrium is forced between 
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one sequence and the other (to avoid unnecessarily longer simulation times) simulating the case 
where a long time interval separates the sequences. In machine learning terms, each 5 pulse sequence 
is a class (therefore we tackle a 15-classes classification problem) and each sample fed into the linear 
readout classifier is a vector with a number of elements equal to the number of reservoir outputs (that 
is 4 in the case depicted in Fig. 5). Each element is the optical energy at the corresponding output port, 
acquired over a time interval corresponding to the last pulse of each sequence. This is just one of the 
many possible feature extraction method; we considered this one because, thanks to the volatile 
memory provided by silicon nonlinear effects in the RRs, information of how the pulses of a sequence 
affect the network should be available in how the network responses to the last sequence pulse. It 
should be stressed that the intensity of the inserted pulse sequences is high enough to trigger 
nonlinearity in RRs without GST, but not to modify the solid-state phase of the GST cells. 

In order to train our simulated reservoir in a scalable way through plasticity, we employ what we call 
a pumped version of the sequence classes. E.g., the pumped version of class 1 is the same sequence 
corresponding to class 1, with the only difference that the last pulse has a higher peak power, 
potentially enough to change the memory states of the GST cells, triggering plasticity. In particular, 
the proposed reservoir training method consists of the following two steps: 

1. Readout training step: this corresponds to the traditional training and performance evaluation 
of a RC system. In particular, all the sequence classes are inserted (e.g. see the bottom of Fig. 
5) and the readout linear classifier is trained on these. Then, the classification error of the 
trained classifier is estimated for each individual class. 

2. Probe and pump step (Fig. 6): we select one of the sequence class that scored worst (i.e. that 
was classified with the highest error) in the previous step and we insert a signal into the 
reservoir with the scope of improving the classification of the selected class by means of 
reservoir plasticity, without retraining the readout classifier. In particular, we repeatedly 
insert the selected sequence class (probe sequence) followed by its pumped version (pump 
sequence, see top of Fig. 6). For each inserted probe sequence, an online classification error 
estimation is performed, employing the linear readout trained in the previous step. The 
intensity of the last pulse of the following pump sequence (which determines how likely it is 
that the memory state of the GST cells are changed) is set to a value proportional the online 
estimated error. This way, intuitively, the state of the GST cells might be changed until the 
estimated error is reduced enough so that the pump is not anymore strong enough to make 
further changes. The parameters of this feedback loop between the error estimation and the 
pump intensity required accurate tuning to achieve convergence to a memory configuration 
corresponding to a classification improvement. For example, at the bottom of Fig. 6, we can 
see that the online error estimation for the inserted sequence class has decreased with time 
w.r.t. its initial value. 

These two steps can be employed to improve the classification of a specific class sequence, or they 
can be repeated to try and improve the multi-class classification performance on multiple types of 
sequences. 

In Fig. 7 we show an example application of the proposed training method for our plastic photonic 
reservoir. The first plot on the left shows the classification performances obtained after the first 
readout training step, before the memory states of the GST cells are changed. The sequence class with 
label 8 is selected for the first probe and pump step, which causes the GST amorphization fraction of 
the memory cells to change over time as shown in the plots on the right. Afterwards, the second 
readout training step is performed and we can notice (in the second plot on the left) that the error of 
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classifying the selected sequence class was significantly reduced thanks to the plastic reservoir 
training. We then choose to tackle the sequence class with label 4. After the second probe and pump 
step, we see (in the last plot on the left) that the error rate corresponding to the selected class was 
significantly reduced again. Importantly, the classification improvement (regarding class label 8) 
achieved by the first probe and pump step appears not to be significantly undermined. That is, in this 
example we do not see a strong catastrophic forgetting effect12. 

Finally, while these simulations provide interesting results and important insight into the problem of 
exploiting plasticity for on-chip scalable training of our plastic reservoir, it is important  to stress again 
that the employed node models should be experimentally validated before we can obtain reliable 
quantitative results from these system-level simulations. In the next section we show some selected 
results of a direct experimental investigation regarding our plastic node. Unfortunately, in the context 
of this project, we did not have the time to repeat these system-level simulations with experimentally 
validated parameter. 

 

Figure 6. Schematic of the probe and pump step of our method to train the photonic reservoir by means of plasticity. 

                                                           
12French, Robert M. "Catastrophic forgetting in connectionist networks." Trends in cognitive sciences 3.4 (1999): 
128-135. 
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Figure 7. Example application of the proposed plastic reservoir training method. On the left, plots showing the estimated 
classification performance (error rate) after subsequent readout training steps. On the right, the GST amorphization fraction 
(i.e. the non-volatile memory state) of the 5 GST cells in the simulated reservoir network (see Fig. 5), corresponding to the 
first probe and pump training step. 

4 EXPERIMENTAL INVESTIGATION OF THE PLASTIC NODE DEVICE (SILICON 

RRS WITH A SHORT GST CELL) 
Before designing and fabricating a photonic chip with plastic reservoir networks, we had to investigate 
the properties of the building blocks (that is, of the presented plastic node) we could realistically 
fabricate. In particular, an important requirement was to successfully deposit short enough GST cells 
on chip (GST deposition was performed by OXFORD partners), so to obtain plasticity without overly 
reducing the energy efficiency and scalability of the network. According to simulations, optimal GST 
lengths were under 1μm while the Fun-COMP partners usually employ GST lengths of more than 2μm. 
It should be stressed that fabricating good silicon RRs with short enough GST cells resulted quite 
challenging, taking several fabrication runs and requiring intense and efficient collaboration between 
the project partners involved (IMEC, OXFORD and MUENSTER). Moreover, the achievement was 
significantly delayed because of COVID19 regulations. Finally, we could obtain and measure satisfying 
building block devices via the following plan:  
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1. MUENSTER partners wrote the silicon waveguides on chip through electron-beam 
lithography. 

2. OXFORD partners performed etching and GST deposition. 
3. IMEC partners measured the fabricated devices. 

An important requirement to obtain energy efficient plastic nodes is to fabricate RRs with suitable 
coupling coefficient, given a certain GST cell length. Indeed, to obtain critical coupling and therefore 
to minimize the energy cost of plasticity, the longer the GST cell the higher the required coupling 
coefficient (and thus the smaller the coupling gap, i.e. the distance between the straight waveguides 
and the ring waveguide). In practice, a 2D parameter sweep (over the GST length and the coupling 
gap) had to be fabricated, in order to determine the best combination between the two parameters 
(a view of our design is showed in Fig. 8). We also tried two different values for the RR radius, namely 
7μm and 15μm (the latter showed better performances and was then selected for the plastic reservoir 
network design). 

Eventually, we could consistently fabricate devices with a GST cell length not shorter than 1μm. 
However, fortunately this provided satisfying energy efficiency and contrast of memory operations 
(significantly more than what our simulations predicted), given a suitable RR coupling gap.  

In order to extract the most relevant information from the relatively large number of fabricated single 
devices, we performed the following two types of measurements: 

 Automatic transmission spectra acquisition: by means of our automatic setup (it can 
automatically align input and output optical fibers to the grating couplers on the photonic 
chip) we measured the response of the RRs at both output ports to a low-power and constant 
input laser beam for different wavelengths around 1550nm (e.g., from 1530nm to 1570nm 

Figure 8. View of our design comprising two 2D parameter sweep of our single building-block device 
(plastic node). The silicon RRs in the left block have a radius of 7μm, the ones in the right block have a 
radius of 15μm. In each block, along the vertical direction the RR coupling gap is changed, along the 
horizontal direction the GST cell length is changed. 
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with 0.01nm steps). The acquired spectra provided important information on the energy 
efficiency of the fabricated devices and on the impact of fabrication errors. 

 High-power high-speed measurements: optical pulses (with durations from few μs to tens of 
μs and peak power around 10mW on-chip) were inserted into the plastic nodes to change the 
memory state of the GST cell. Then, spectra were acquired to check the impact of those 
changes on the linear transmission of the RRs. These measurements provided important 
insight into the energy efficiency and contrast of memory operations (considering both 
amorphization and recrystallization of the GST thin film). 

More details regarding the outcome of these measurements are given in Deliverable D3.3. 

 

Figure 9. Magnified picture of fabricated single plastic nodes on a silicon-on-insulator (SOI) chip. One device is being 
measured by coupling its grating couplers with two (input and output) optical fibers. 

5 DESIGN AND FABRICATION OF PLASTIC RESERVOIR NETWORKS WITH SELF-
LEARNING CAPABILITIES 

Exploiting the insight regarding building-block parameters and network topology obtained through 
the simulations and measurements presented in the previous sections, we have designed several 
versions of the proposed photonic reservoirs, for two different approaches of fabricating silicon 
photonic integrated circuits: 

 Fabrication through electron-beam lithography by the MUENSTER partners (a design overview 
is shown in Fig. 10), that is the same approach we used to fabricate the chips for single plastic 
nodes investigation, as presented in the previous section. This option allows to fabricate few 
chips relatively fast, but there is a significant chance that a fabrication step goes wrong, which 
can sometimes be found out only after measuring the chips. Moreover, the properties of 
nominally the same photonic component might change significantly from one chip to another, 
or even depending on the position on the chip area. Another downside is that the fabrication 
errors affecting waveguides and grating couplers limit the quality (Q-factor and finesse) of RRs 
and the efficiency of coupling the measurement setup with the photonic circuits, which in turn 
limits the scalability of viable reservoir networks.  
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 Fabrication by Imec’s foundry13 (a design overview is shown in Fig. 11), which is costly and can 
take several months (up to one year) but allows to obtain several tens of high quality silicon 
photonic chips. This is a highly reproducible and CMOS compatible fabrication, providing low-
loss waveguides and highly efficient grating couplers, thus allowing to obtain more energy 
efficient and scalable silicon RRs networks. A downside regarding our specific case is that the 
OXFORD partners have to accurately etch windows through the chip’s oxide overlayer in order 
to deposit GST on the waveguides. This is a difficult operation that requires many trials. 

We chose to go for both options in parallel in order to increase the likelihood to obtain at least one 
chip with working plastic reservoir networks. Fortunately, we could achieve this via the first option 
(see picture of part of the integrated photonic circuits in Fig. 12), while the second fabrication option 
took significantly more time than expected (at the moment – i.e. June 2022 -  we have just obtained 
some first chips without GST cells, but we still have to test them). In any case, while the chips obtained 
from the first fabrication option contain an important first hardware demonstrator for proof-of-
principle measurements, the chips from the second option will allow us to investigate more scaled-up 
and advanced neuromorphic computing applications. 

 

Figure 10. Photonic integrated circuit design for fabrication through electron-beam lithography (first fabrication option). The 
design comprises single-device test structures (at the sides) and different versions of plastic reservoir networks, with 
variations in topologies, network dimensions, single-devices properties (such as RR coupling coefficients) and GST cells 
density. 

                                                           
13 See for example https://europractice-ic.com/technologies/photonics/imec/ 
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Figure 11. Photonic integrated circuit design for fabrication by Imec’s foundry (second fabrication option). The design 
comprises single-device test structures and different versions of plastic reservoir networks, with variations in topologies, 
network dimensions, single-devices properties (such as RR coupling coefficients) and GST cells density. In particular, the 
higher waveguide quality provided by this fabrication option allowed us sweep over a larger range of RR coupling coefficients. 

 

Figure 12. Magnified picture of fabricated plastic reservoir networks on a silicon-on-insulator (SOI) chip. 

In order to demonstrate self-learning RC, we inserted different classes of pulse sequences into 
different reservoir network versions (similarly as in the system-level simulations described in Section 
3) and we first investigated how the output was modified by the solid-state phase of the GST cells that 
were plastically adapting to the input signal. Promisingly, we observed that the plastic non-volatile 
changes had a significant impact on the output signal, and that this impact was strongly dependent 
on the previously inserted sequences. Importantly, such a rich plastic behaviour was detected 
concurrently with a strong nonlinear distortion of the input signal, ascribed to the silicon nonlinear 
effects affecting the resonant behaviour of the RRs in the network. Therefore, as planned (see Section 
1), our reservoir networks showed both volatile and non-volatile memory, together with nonlinearity. 
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Afterwards, in accordance with the RC paradigm, we trained a linear classifier to classify the input 
pulse sequences by employing the reservoir output. We observed that the classification performance 
was significantly improved by the reservoir presence and that such an improvement was strongly 
modified by the plastic adaptation of the network. The details regarding the employed reservoir 
networks, measurements and results are presented in Deliverable 3.3. 

6 CONCLUSIONS 
We have discussed the most relevant aspects and steps of our research on the development of a 
reservoir computing system based on an integrated photonic network, which, enhanced by N-vN unit 
cells, can plastically adapt to its input and has self-learning capabilities (i.e. the performance of a 
tackled machine learning task can be improved by the autonomous adaptation of the network, 
without the aid of an external learning algorithm that tunes the network parameters). In particular: 

 We developed an efficient numerical model of a silicon ring resonator with a GST cell on its 
waveguide, which accounts for the nonlinear dynamics due to the silicon nonlinear effects 
affecting the ring resonance, and for the solid-state phase change of the GST thin film due to 
optical pulses (all-optical non-volatile memory operations). 

 By employing the developed model, we showed via numerical simulations that this device 
(especially when short GST cells (≤ 1μm) are employed) is a promising candidate for a plastic 
node in a photonic reservoir. In particular, the combination of resonant behaviour and 
nonlinear effects allows to enhance the energy efficiency of memory operations and the 
scalability of networks based on this building block. 

 By connecting multiple instances of the developed numerical model, we simulated networks 
comprising several silicon RRs (with and without GST cell) and showed that these can operate 
as photonic reservoir to carry out machine learning tasks such as classification of optical pulse 
sequences. Moreover, we showed that the classification performance of a given sequence 
class can be improved by means of a scalable training algorithm that exploits the reservoir 
network plasticity. Importantly, such a training method does not require external tunability of 
the network weights and observability of the internal states, as opposed to non-biologically-
plausible training algorithms based on backpropagation. 

 We designed, fabricated and measured several versions of the plastic node (silicon RRs with a 
GST cell) in order to experimentally investigate the energy efficiency and contrast of non-
volatile memory operations, and to determine the most suitable design parameters for 
deployment in plastic reservoir networks. 

 We designed several versions of plastic reservoir networks for two different silicon photonics 
fabrication options. One is performed by the project partners and takes a relatively short time, 
but provides less reproducible circuits and larger fabrication errors affecting the basic 
photonic components. The other takes a longer time, but provides several tens of high-quality 
photonic chips. Via the first fabrication option, we managed to fabricate working plastic 
reservoir networks. In particular, we found that the performances of the RC system in pulse 
sequences classification is strongly dependent on the non-volatile memory state of the GST 
cells, that can in turn be changed by the input signal. Therefore, our plastic reservoir networks 
meet the basic requirements for self-learning behaviour based on network plasticity. 

More details regarding the measurements and experimental results are presented in Deliverable 3.3. 

 


