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Summary

In this deliverable we present the most relevant aspects and steps of Fun-COMP
research on the development of a self-learning reservoir computing system based on an
integrated photonic network containing phase change material cells (N-vN unit cells).

In Section 1 we discuss the reasoning behind our choice of the type of photonic network
we planned to fabricate and investigate, together with the main functional requirements
we aimed to achieve.

In Section 2 we focus on the main building block for our plastic reservoir network. In
particular, we describe the development of a new numerical model to simulate the
device in a modular and efficient way. Moreover, we show that our simulations predict
that significant improvements in energy efficiency and contrast of memory operations
can be achieved by suitably choosing the design parameters of the device, allowing us to
build more scalable plastic photonic networks.

In Section 3 we discuss about system-level simulations of our plastic reservoir
networks. In particular, we present a novel scalable training method to improve the
performance of our reservoir system by means of plasticity.

In Section 4 we describe the design, fabrication and measurement of several versions of
the main building block device for our reservoir network.

In Section 5 we describe the design and successful fabrication of several plastic
reservoir network versions.

In Section 6 we summarize the main conclusions regarding the work presented in this
deliverable.
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1 RATIONALE FOR THE DEVELOPMENT OF THE PLASTIC PHOTONIC NETWORK
FOR SELF-LEARNING RESERVOIR COMPUTING

In the past decade, the Fun-COMP partners IMEC have been investigating and developing
reservoir computing®® (RC) systems based on passive photonic networks on a silicon chip®®. The
reservoir in these systems is based on multiple input and output ports (consisting of grating
couplers) connected by waveguides, splitters and combiners, so to form a network where the
input optical signal interferes with multiple delayed versions of itself (an example is schematized
in Fig. 1).

Optical output

- Tunable weights
Optical input

Figure 1. Schematic of the passive integrated photonic RC system. Input optical signals can be inserted in the chip (grey area,
black arrows and circles show the network topology) through grating couplers. The photonic circuit splits the input signal,
delays the different splits (through long waveguides folded into spirals) and recombines the differently delayed versions of
the input signal at the network nodes, so that they optically interfere. The resulting signal at some nodes is read out (optical
outputs) by fast detectors that measure the time-dependent optical signal intensity. These intensity measures are directly
fed into a ML linear classifier or regressor (one layer of neurons) that is trained to carry out a given task on the input signal.

The connections in this type of network are fixed and, because of fabrication errors, they cannot be
predicted before fabrication. Therefore, at different output ports, different representations of the
input signal are obtained, due to the different ways the original input signal interferes with itself at
different nodes of the network. The signal collected at the different reservoir outputs is then fed into
a linear readout, i.e. a linear regressor or classifier (that can as well be considered as a single layer of
neurons of an artificial neural network), which is trained to carry out a chosen machine learning (ML)
task on the input signal, such as bit sequence classification, Boolean operations with memory or

2 Tanaka, Gouhei, Toshiyuki Yamane, Jean Benoit Héroux, Ryosho Nakane, Naoki Kanazawa, Seiji Takeda,
Hidetoshi Numata, Daiju Nakano, and Akira Hirose. "Recent advances in physical reservoir computing: A review."
Neural Networks 115 (2019): 100-123.

3 An introduction on the topic is provided in the public deliverable D3.1: “A new approach to reservoir
computing”.

4 Vandoorne, Kristof, Pauline Mechet, Thomas Van Vaerenbergh, Martin Fiers, Geert Morthier, David
Verstraeten, Benjamin Schrauwen, Joni Dambre, and Peter Bienstman. "Experimental demonstration of
reservoir computing on a silicon photonics chip." Nature communications 5, no. 1 (2014): 1-6.

5 Sackesyn, Stijn, Chonghuai Ma, Joni Dambre, and Peter Bienstman. "Experimental realization of integrated
photonic reservoir computing for nonlinear fiber distortion compensation." Optics Express 29, no. 20 (2021):
30991-30997.

6 Ma, Chonghuai, Joris Lambrecht, Floris Laporte, Xin Yin, Joni Dambre, and Peter Bienstman. "Comparing
different nonlinearities in readout systems for optical neuromorphic computing networks." Scientific Reports 11,
no. 1(2021): 1-8.
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telecom signal equalization. The role of the reservoir is to enhance the effective computational power
of the trained readout, by increasing the dimensionality of the original input signal (e.g., in Fig. 1, one
time-dependent input is transformed into four time-dependent representations) and by introducing
memory into the system. In particular, in the discussed passive integrated type of photonic reservoir,
memory is provided by optical delay lines (long waveguides folded into spirals) that connect the
different splitters and combiners. The main advantages of employing a passive photonic circuit as
reservoir is that it does not actively consume energy (although the input signal undergoes significant
power losses while propagating through the network) and that it can operate at extremely high speed
(limited only by the time of travel of the light through the circuit). On the other hand, a passive circuit
can only perform linear optical operations and thus the required nonlinearity (to expand the
dimensionality of the input signal) is only given by the detectors at the readout, which transform an
optical signal (characterized by amplitude and phase) into an electric one, proportional to the optical
intensity. The RC system therefore represents a shallow artificial neural network (ANN), as opposed
to deep ANNs where nonlinear nodes are cascaded, forming multiple layers. Generally, a deep
nonlinear architecture is more powerful in creating diverse representations of the input using a limited
number of connections and nodes, which often translates into a higher computational power.

In Task 3.1 of the Fun-COMP project we aimed to enhance a photonic reservoir by introducing the all-
optical non-volatile memory provided by the N-vN unit cells (i.e. waveguide segments covered by a
thin film of phase-change material, namely here the Ge,Sb,Tes alloy, or GST for short). In particular,
we want this non-volatile memory to be accessible by the same input signal that we want to process
via our ML system, as opposed to an external tuning of the memory elements. That is, we want the
input signal to reach the N-vN cells in the reservoir circuit with enough power to change the memory
state (i.e. the solid-phase state of the GST thin films). This would allow our enhanced reservoir to
plastically adapt its internal connections to its input: we would thus introduce the plasticity property
into our ML system. Such a condition is key to achieve self-learning, i.e. the ability to improve the
performance on a ML task without explicitly and externally tuning the parameters to be learned, such
as the synaptic weights in the case of an ANN. Importantly, our brain learns by means of plasticity and
self-learning, therefore we know that these properties can potentially enable us to overcome the
scalability limitations of today’s neuromorphic computing systems, which heavily rely on the non-
biologically-plausible backpropagation training algorithm?’®,

However, there are two main issues that prevent us to readily insert the N-vN unit cells into the
described integrated passive photonic reservoir to obtain a plastic RC system:

o The first issue is that the passive integrated reservoir (e.g. see Fig. 1) operates much faster
than the N-vN cell. Indeed, the maximum time scale of the first is given by the maximum length
of the delay lines connecting the optical nodes, while the minimum time scale of the latter is
given by how fast the solid-state phase of the GST on a silicon waveguide can be changed by
a realistic optical input signal (the time scale is from tens to hundreds of nanoseconds®). In
order to match the time scales of the two devices, way too long optical delay lines would be

7 Whittington, James CR, and Rafal Bogacz. "Theories of error back-propagation in the brain." Trends in cognitive
sciences 23, no. 3 (2019): 235-250.

8 Taherkhani, Aboozar, Ammar Belatreche, Yuhua Li, Georgina Cosma, Liam P. Maguire, and T. Martin McGinnity.
"A review of learning in biologically plausible spiking neural networks." Neural Networks 122 (2020): 253-272.

9 Li, Xuan, Nathan Youngblood, Zengguang Cheng, Santiago Garcia-Cuevas Carrillo, Emanuele Gemo, Wolfram
HP Pernice, C. David Wright, and Harish Bhaskaran. "Experimental investigation of silicon and silicon nitride
platforms for phase-change photonic in-memory computing." Optica 7, no. 3 (2020): 218-225.
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required in the passive reservoir, causing the optical connections to be too lossy and to occupy
a too large chip area.

e The second issue is that significant optical power is always lost at the combiners of the optical
nodes in the passive reservoir, due to interference. This makes it very challenging to introduce
several N-vN cells (that also are significantly lossy) in a large passive reservoir, since enough
optical power must reach all the N-vN cells and the RC readout. This considerably limits the
scalability of a plastic passive reservoir.

It should be noted that both issues specifically originate from the requirement of plasticity and could
otherwise be circumvented if we allowed ourselves to externally tune the memory state of the N-vN
unit cells.

To solve these problems, we consider an integrated optical reservoir based on a network of silicon
ring resonators (RRs, see schematic in Fig. 2) instead of the passive reservoir architecture.
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Figure 2. Schematic of the proposed silicon RR optical network for integrated plastic RC with PCM. Several RRs are coupled
by straight silicon waveguides. Those RRs that do not comprise a N-vN cell (GST layer) are used to provide volatile memory
and nonlinearity via silicon nonlinear effects (thus they can be seen as neurons of a RNN). Those RRs combined with PCM
cell, instead, provide all-optical non-volatile memory to the circuit, and thus plasticity (they can be seen as connections with
plastic synaptic weights). The small waveform plots at the bottom exemplify how a RR can nonlinearly transform an input
sequence of optical pulses.

The first of the aforementioned issues is then solved by employing silicon nonlinear effects (based on
temperature and free carrier concentration of a silicon waveguide) to provide the network with the
required volatile memory for RC operations, instead of the optical delay lines in the passive reservoir
architecture. In particular, a strong enough light pulse exciting a silicon RR can increase the
temperature and free carriers concentration in the ring waveguide, which can in turn modify the RR
resonance properties and thus the way the light is transmitted by these devices. After the optical
excitation of a RR, the consequent perturbation in temperature and free carrier concentration relaxes
with characteristic times of, respectively, around 5ns and 100ns. Importantly, these are well
comparable with the characteristic times of all-optical memory operations in a N-vN cell. In addition
to provide volatile memory, the silicon RRs are also nonlinear nodes and can be considered as neurons
of an ANN with memory, i.e. a recurrent neural network (RNN). The presence of multiple layers of
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neurons, as previously discussed, is expected to provide a significant advantage in computational
power w.r.t. the passive reservoir case.

The latter of the aforementioned issues is addressed by combining a N-vN unit cell with a silicon RR to
form a plastic synapse with improved energy efficiency (for brevity, from now on we will refer to this
device as the plastic node). Although such a device is structurally the same as what we call (in the
context of Fun-COMP project) the extended N-vN unit cell, it is functionally different: instead of being
used and optimized to mainly provide a means for wavelength division multiplexing, it is used and
optimized to enhance energy efficiency and cascadability of non-volatile memory operations, that is
in order to provide a more scalable source of plasticity. In particular, thanks to its resonant behaviour,
the silicon RR presents an enhanced sensitivity to the state of the GST deposited on its waveguide.
This allows us to obtain a sufficient output contrast (i.e. the difference in the RR optical output due to
different memory states) from a significantly shorter GST cell, which in turn requires less optical
energy to be switched from a solid-state phase to another. Further details can be found in our recently
published article!®. At the same time, using this type of plastic node coupled with other silicon RRs
(e.g. as in Fig. 2) provides a way for the optical input power to reach and change the memory state of
N-vN cells that are located far away and deep in the network. Indeed, the plastic node can be designed
so that an optical pulse that changes its memory state can also shift the resonance wavelength away
from the input wavelength (because of the aforementioned silicon nonlinear effects). This means that,
for a certain time after its excitation, the node does not disrupt the passage of subsequent input pulse,
which can therefore reach the next RRs in the series, and so on.

Finally, the configuration space of the proposed plastic reservoir is greatly expanded by the strong
sensitivity of RRs to the wavelength of input light. Indeed, for very close wavelengths, e.g. with
differences of just 0.01nm, the network can behave very differently. Thus, in principle we obtain many
different network topologies corresponding to different input wavelengths. Moreover, thanks to the
wavelength multiplexing capability of RRs (RRs have quasiperiodic resonance wavelengths in the
frequency domain) these different network topologies can be connected to one another by means of
the silicon nonlinear effects, thus potentially forming a network much larger than the physical one,
without increasing the on-chip footprint. Indeed, two different resonant wavelengths can be coupled
in a RR because both affect and are affected by the temperature and the free carrier concentration of
the same ring waveguide.

2 SILICON RING RESONATOR WITH GST CELL: AN EFFICIENT AND SCALABLE
PLASTIC NODE

In this section we will present the theoretical and numeric investigation of the plastic node introduced
in the previous section. Such a plastic node consists of a silicon RR with a GST cell on its waveguide
(extended N-vN configuration) that is specifically designed so that its resonance properties
(dynamically affected by silicon nonlinear effects) improve the energy efficiency of memory
operations and the cascadability of several plastic nodes in a network. Here we present the main
results, while more details can be found in the article’® that we have recently published together with
the Fun-COMP EXETER partners.

10 Alessio Lugnan, Santiago Garcia-Cuevas Carrillo, C. David Wright, and Peter Bienstman, "Rigorous dynamic
model of a silicon ring resonator with phase change material for a neuromorphic node," Opt. Express 30, 25177-
25194 (2022)
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We developed a numerical model to simulate the dynamical behaviour of the plastic node, by
combining two pre-existing numerical models:

e the compact behavioural model of the basic N-vN unit cell (developed by EXETER partners and
presented in Deliverable D1.6 and in'!) whose parameters are adapted to the silicon platform
case;

e anonlinear RR model based on the temporal couple mode theory (TCMT), which we adapted
to the specific case of our plastic node by properly accounting for the high absorption and
asymmetry in the ring due to the phase change material.

In particular, we were interested in developing a modular model that can easily be used as building
block in larger circuit simulations, comprising several photonic devices. For this purpose, we also
restructured the optical equations so that we could efficiently employ our model in a modular way
within a commercial software for system-level photonics simulations (Luceda Caphe).

The main input and output quantities of the basic N-vN cell model are respectively the input optical
power and the complex effective index of the waveguide covered with PCM (GST). Therefore, keeping
in mind the configuration we want to simulate, the simplest way of combining this model with a RR
model is to run the two models in parallel so that, at each time step, the RR provides the input optical
signal to the GST waveguide segment, which in turn updates its complex effective index. In this case,
a change in complex effective index of the ring waveguide segment simply results in a variation of the
attenuation and of the phase shift of the light passing through it, respectively resulting in a change of
width and position of the RR resonance peak in the frequency domain. Also note that the complex
refractive index provided by the GST model depends both on the corresponding temperature at that
location of the waveguide, and on the degree of amorphization of the GST layer.

2.1 ENERGY EFFICIENCY AND SPEED IMPROVEMENT OF MEMORY OPERATIONS

By accounting for silicon nonlinear effects, which shift the RR resonance wavelength during the
excitation by pump pulses, our model allows to predict the optimal RR power coupling coefficients
(i.e. how much each ring is coupled to the straight waveguides, see Fig. 2) and wavelength detuning
(i.e. the difference between resonance wavelength and input laser wavelength) that maximizes energy
efficiency of memory operations. Such a prediction can provide important qualitative insight, but also
guantitative insight once accurate model parameters are experimentally obtained.

We run several simulations with different values of GST cell length, input pulse power, RR coupling
coefficients and wavelength detuning. We found that a favourable GST cell length is 0.7um. Setting
the GST cell to this length, the minimum pulse power required to reach the maximum amorphization
fraction is around 26mW with 10ns duration (see Fig. 3 (a) for the full parameter sweep results).
Clearly, this type of information could not be obtained from simulations that do not account for the
relevant nonlinear dynamics. For example, without nonlinear dynamics, the resonant wavelength of
the RR would be fixed and therefore we would wrongly obtain that a null wavelength detuning
optimizes the energy efficiency of memory operations.

Furthermore, employing the same optimal parameters and after an exhaustive exploration of different
input pulses combinations, we found that full recrystallization (i.e. nullifying the maximum achievable
amorphization) could be obtained by inserting four pulses of 10ns duration: the first of around 23mW

11 Carrillo, Santiago Garcia-Cuevas, Alessio Lugnan, Emanuele Gemo, Peter Bienstman, Wolfram HP Pernice,
Harish Bhaskaran, and C. David Wright. "System-level simulation for integrated phase-change photonics."
Journal of Lightwave Technology 39, no. 20 (2021): 6392-6402.
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and the others of around 7mW. The aforementioned input pulses for amorphization and crystallization
are shown in Fig. 3 (b), and the corresponding temporal evolution of the states in the developed model
is represented in Fig. 3 (c). In order to obtain access to the steady state values without running the
simulation for an unnecessary longer time, we forced the volatile variables back to their initial values
after the amorphization and crystallization pulses (artificial cooldown), which has the same effect of
waiting until the system reaches its equilibrium again.
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Figure 3 (adapted from19). (a) Colormap of the GST amorphization fraction as a function of resonance wavelength detuning
and of the RR power coupling coefficient. An optical pulse of 10ns duration and around 26mW power was considered for
amorphization. (b) Inserted pulse sequences for fast and energy efficient amorphization (15t pulse) and subsequent
crystallization of the GST cell. (c) Corresponding time evolution of the model states during the insertion of the amorphization
and crystallization pulse sequences, in (b).

We made a comparison between these simulation results and the results from the employed basic N-
vN cell model (straight Si waveguide with 4um GST cell, validated by fitting the experimental data
reported in®). With such a comparison, we aim to show, at least qualitatively, the advantages enabled
by the RR resonance in terms of speed and energy efficiency of memory operations. To start with, the
maximum transmission contrast achieved with our plastic node model is around 15% considering a
single input. To obtain such a contrast value, we considered an input amorphization pulse of 10ns
conveying only around 0.26nJ energy, while full recrystallization is achieved within 70ns with less than
0.5nJ. In comparison, to achieve a similar contrast considering the basic N-vN cell model (based on
straight silicon waveguide), a 100ns long amorphization pulse with energy of 1.6nJ is required. This
shows that, thanks to the RR resonance, both speed and energy efficiency of memory operations are
substantially improved. Moreover, to obtain the same amorphization length of around 543nm, the
GST on waveguide model requires a pulse more than 50% longer (using the same peak optical power)
and it only achieves less than 3% transmission contrast, compared to around 15% for the RR device
case. This result indicates that the optical resonance improves memory operations by reducing the
energy required to amorphize the GST and, at the same time, by enhancing the sensitivity to changes
in GST material phase distribution. In addition, the same input pulse that causes the maximum
contrast in the case of the simulated RR with GST, is not able to modify the GST crystallinity fraction
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in the case of its straight waveguide counterpart (see Fig. S4 (c) in the supplemental document).
Finally, full recrystallization in the straight waveguide simulation is achieved employing a double-step
pulse (as in®) 530 ns long and with total energy of more than 3.9nJ. Also in this case, the RR enables a
significant improvement in both speed and energy efficiency.

2.2 CONTRAST AND ENERGY EFFICIENCY OF READING THE MEMORY STATE

The observed large advantage in terms of speed and energy efficiency of memory operations is
relevant only if the memory state can be easily read and used to control subsequent photonic
operations. In order to take this aspect into account, in addition to calculating the transmission relative
contrast (i.e. the difference in transmitted power after and before amorphization, divided by the latter
value), we also consider the corresponding transmission absolute contrast (i.e. the same difference in
transmitted power but divided by the input power), for each output port. The latter provides
important information regarding the optical loss of the memory state reading, as it is relative to the
total input power.

Moreover, we also monitor the phase contrast (i.e. the difference in optical phase of the output after
and before amorphization, divided by rt), which can be converted into transmission contrast through
optical interference. In particular, if the memory device is used as a component of a coherent optical
circuit, e.g. as non-volatile weight or as plastic synapse for neuromorphic computing, having a high
enough phase contrast can be key, even if the transmission contrast is low. Finally, in order to measure
the optical loss corresponding to the phase contrast, we also monitor the transmission of each output
port after amorphization (given by the fraction of the output power w.r.t. the total input power).

We explored how these measures vary in different configurations by performing, as before, a
parameter sweep in coupling coefficient and resonance wavelength detuning, but this time using
constant low optical power as input, so as to leave the RR in the linear regime. At first, we considered
a single input port and, considering the two extremes in the achievable crystalline fraction range of
the GST cell, we obtained a maximum transmission relative contrast of around -15% (Fig. 4 (a)) at the
through port (that is the output port on the straight waveguide where input is inserted), whose
absolute value is very similar to the maximum value reported for a straight silicon waveguide with
GST®. The drop port (that is the output port on the straight waveguide opposite to the input
waveguide) shows a maximum value of around 21%, with the high contrast area in the parameter
space not well overlapping with the through port case. But for both output ports, the transmission
absolute contrast is always below 3.5% in absolute value (Fig. 4 (b)). This indicates that accessing the
memory state in the linear regime is quite inefficient in terms of energy. Considering this input
configuration, the phase contrast was negligible.
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Figure 4 (adapted from19). (a), (b), (c), (d): Colormaps showing the results of the performed parameter sweeps in wavelength
detuning and coupling coefficient, at the through port of the simulated RR with GST. (a) and (b): Transmission relative (and
absolute, respectively) contrast when a single input port is excited. (c) and (d): The same quantities when both input ports
are excited with same power and phase. The considered RR resonance has even azimuthal number. (e): Results of two time-
dependent simulations, one for crystalline (red) and the other for amorphized (blue) GST cells, of the silicon photonic circuit
schematized in the inset of the top plot. From top to bottom, plots showing input optical power, output power and optical
phase at through and drop ports, as a function of time.

Nevertheless, we found that the achievable contrast values can be significantly increased by exploiting
the enhanced sensitivity of interference effects in a RR. In particular, by inserting the same constant
optical power in both input ports (on opposed straight waveguides), we achieved transmission relative
contrasts up to 280% at through port (Fig. 4 (c)) and up to 350% at drop port. Still, we notice that the
access to the memory state is not energy efficient, being the transmission absolute contrast not higher
than 2.5% in absolute value (Fig. 4 (d)). Moreover, it should be stressed that when two inputs are
considered, very different responses are obtained depending on whether the resonance azimuthal
number is even or odd. In this case we considered an even azimuthal number, namely 164. This value
is found by setting the resonance wavelength to 1550nm and the RR radius to about 15nm.

Another way to enhance the impact of the GST crystalline fraction on the response of a photonic
circuit, is through the excitation of dynamics provided by nonlinear optical cavities. To show this for
the first time, we employed our model as a building block of a small network of four RRs (Fig. 4 (e)),
two of which with a 0.7um GST cell. The execution of the 1us simulation (more than 330,000 time
steps) required less than 40s on a fairly standard desktop computer (processor: Intel(R) Xeon(R) CPU
E5-2650L v3 @ 1.80GHz) employing up to around 0.5 GB of RAM. The two RRs without GST have a
relatively small power coupling coefficient (around 4%), so that the power enhancement in the ring
waveguide allows to trigger nonlinear effects without reaching input power levels that can change the
GST memory state. Considering suitable design parameters for this novel device, we obtained strong
contrast in the time-dependent network response, both in terms of output power and optical phase
(Fig. 4 (e)). Importantly, it should be noticed that this is achieved with relatively low overall power
loss. In particular, such an effect is relevant for building plastic recurrent NNs, where the network
topology is expanded along the time dimension, and where we believe the potential of the modelled
device can be exploited at its fullest.

10
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3 SYSTEM-LEVEL SIMULATIONS: A SCALABLE ON-CHIP TRAINING APPROACH

In this section we propose and investigate, by means of numerical system-level simulations, a novel
on-chip training approach based on plasticity, to optimize the non-volatile weights (given by the
memory states of the aforementioned plastic nodes) of our plastic RC system. The proposed training
method does not require to tune the network weights one by one nor to observe the internal states,
but it only requires to update the input optical signal on the basis of the optical output of the reservoir.
Therefore, it potentially overcomes the scalability limitations suffered by other common training
approaches, such as the ones based on backpropagation. It should be stressed that, in order to provide
accurate quantitative predictions, our plastic node model should be first fit and validated using direct
experimental data. Instead, in our model we employ experimentally validated parameters for the basic
N-vN unit cell model and the nonlinear silicon RR model separately. Nevertheless, the presented
simulations provided important qualitative insight, useful to design the final hardware demonstrator
for a self-learning photonic RC system.

We simulated several variations of photonic dynamical networks like the one in Fig. 2 by just
connecting together many instances of our plastic node model (described in the previous Section),
within the Luceda Caphe simulator framework. It is sufficient to set the GST cell length to zero to
obtain a silicon RR building block without PCM cell. The parameter space corresponding to different
possible versions of simulated networks is extremely large: we can sweep over the distance between
the RRs w.r.t. their radius, the number of node rows and columns, the number and position of RRs
with GST cell w.r.t. the ones without GST cell, the characteristics of single nodes such as coupling
coefficient and GST cell length, and so on. For this reason, it was impossible to perform an exhaustive
parameter exploration without limiting the number of RRs too much. Still, we explored different
network versions trying to achieve a good balance between plasticity and nonlinearity (the RRs with
GST cells have weaker nonlinear behaviour because the PCM cell introduces a significant power loss).
For our numerical proof of concept, we selected the network version schematized in Fig. 5.
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Figure 5. On top: schematic of the plastic reservoir network employed to obtain the presented system-level simulation
results. Arrows pointing towards the straight waveguides indicate the input ports; arrows pointing outwards indicate the
output ports, whose optical intensity is acquired by simulated detectors and sent to a linear classifier (logistic regression with
optimized L2 regularization strength), in accordance with the RC paradigm. At the bottom: example of optical input power
as a function of time. 15 different types (classes) of 5 optical pulse sequence are inserted with random order. An artificial
cooldown between each input sequence simulates the case where the sequences are separated by a time interval that is
long enough for the system to reach thermal equilibrium.

At the input ports of the simulated network we continuously insert 15 different types (classes) of 5
optical pulse sequences in random order, one after another. Thermal equilibrium is forced between
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one sequence and the other (to avoid unnecessarily longer simulation times) simulating the case
where a long time interval separates the sequences. In machine learning terms, each 5 pulse sequence
is a class (therefore we tackle a 15-classes classification problem) and each sample fed into the linear
readout classifier is a vector with a number of elements equal to the number of reservoir outputs (that
is 4 in the case depicted in Fig. 5). Each element is the optical energy at the corresponding output port,
acquired over a time interval corresponding to the last pulse of each sequence. This is just one of the
many possible feature extraction method; we considered this one because, thanks to the volatile
memory provided by silicon nonlinear effects in the RRs, information of how the pulses of a sequence
affect the network should be available in how the network responses to the last sequence pulse. It
should be stressed that the intensity of the inserted pulse sequences is high enough to trigger
nonlinearity in RRs without GST, but not to modify the solid-state phase of the GST cells.

In order to train our simulated reservoir in a scalable way through plasticity, we employ what we call
a pumped version of the sequence classes. E.g., the pumped version of class 1 is the same sequence
corresponding to class 1, with the only difference that the last pulse has a higher peak power,
potentially enough to change the memory states of the GST cells, triggering plasticity. In particular,
the proposed reservoir training method consists of the following two steps:

1. Readout training step: this corresponds to the traditional training and performance evaluation
of a RC system. In particular, all the sequence classes are inserted (e.g. see the bottom of Fig.
5) and the readout linear classifier is trained on these. Then, the classification error of the
trained classifier is estimated for each individual class.

2. Probe and pump step (Fig. 6): we select one of the sequence class that scored worst (i.e. that
was classified with the highest error) in the previous step and we insert a signal into the
reservoir with the scope of improving the classification of the selected class by means of
reservoir plasticity, without retraining the readout classifier. In particular, we repeatedly
insert the selected sequence class (probe sequence) followed by its pumped version (pump
sequence, see top of Fig. 6). For each inserted probe sequence, an online classification error
estimation is performed, employing the linear readout trained in the previous step. The
intensity of the last pulse of the following pump sequence (which determines how likely it is
that the memory state of the GST cells are changed) is set to a value proportional the online
estimated error. This way, intuitively, the state of the GST cells might be changed until the
estimated error is reduced enough so that the pump is not anymore strong enough to make
further changes. The parameters of this feedback loop between the error estimation and the
pump intensity required accurate tuning to achieve convergence to a memory configuration
corresponding to a classification improvement. For example, at the bottom of Fig. 6, we can
see that the online error estimation for the inserted sequence class has decreased with time
w.r.t. its initial value.

These two steps can be employed to improve the classification of a specific class sequence, or they
can be repeated to try and improve the multi-class classification performance on multiple types of
sequences.

In Fig. 7 we show an example application of the proposed training method for our plastic photonic
reservoir. The first plot on the left shows the classification performances obtained after the first
readout training step, before the memory states of the GST cells are changed. The sequence class with
label 8 is selected for the first probe and pump step, which causes the GST amorphization fraction of
the memory cells to change over time as shown in the plots on the right. Afterwards, the second
readout training step is performed and we can notice (in the second plot on the left) that the error of
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classifying the selected sequence class was significantly reduced thanks to the plastic reservoir
training. We then choose to tackle the sequence class with label 4. After the second probe and pump
step, we see (in the last plot on the left) that the error rate corresponding to the selected class was
significantly reduced again. Importantly, the classification improvement (regarding class label 8)
achieved by the first probe and pump step appears not to be significantly undermined. That is, in this
example we do not see a strong catastrophic forgetting effect?.

Finally, while these simulations provide interesting results and important insight into the problem of
exploiting plasticity for on-chip scalable training of our plastic reservoir, it is important to stress again
that the employed node models should be experimentally validated before we can obtain reliable
guantitative results from these system-level simulations. In the next section we show some selected
results of a direct experimental investigation regarding our plastic node. Unfortunately, in the context
of this project, we did not have the time to repeat these system-level simulations with experimentally
validated parameter.
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Figure 6. Schematic of the probe and pump step of our method to train the photonic reservoir by means of plasticity.

2Erench, Robert M. "Catastrophic forgetting in connectionist networks." Trends in cognitive sciences 3.4 (1999):
128-135.
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Figure 7. Example application of the proposed plastic reservoir training method. On the left, plots showing the estimated
classification performance (error rate) after subsequent readout training steps. On the right, the GST amorphization fraction
(i.e. the non-volatile memory state) of the 5 GST cells in the simulated reservoir network (see Fig. 5), corresponding to the
first probe and pump training step.

4 EXPERIMENTAL INVESTIGATION OF THE PLASTIC NODE DEVICE (SILICON
RRS WITH A SHORT GST CELL)

Before designing and fabricating a photonic chip with plastic reservoir networks, we had to investigate
the properties of the building blocks (that is, of the presented plastic node) we could realistically
fabricate. In particular, an important requirement was to successfully deposit short enough GST cells
on chip (GST deposition was performed by OXFORD partners), so to obtain plasticity without overly
reducing the energy efficiency and scalability of the network. According to simulations, optimal GST
lengths were under 1um while the Fun-COMP partners usually employ GST lengths of more than 2um.
It should be stressed that fabricating good silicon RRs with short enough GST cells resulted quite
challenging, taking several fabrication runs and requiring intense and efficient collaboration between
the project partners involved (IMEC, OXFORD and MUENSTER). Moreover, the achievement was
significantly delayed because of COVID19 regulations. Finally, we could obtain and measure satisfying
building block devices via the following plan:
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1. MUENSTER partners wrote the silicon waveguides on chip through electron-beam
lithography.

2. OXFORD partners performed etching and GST deposition.

3. IMEC partners measured the fabricated devices.

An important requirement to obtain energy efficient plastic nodes is to fabricate RRs with suitable
coupling coefficient, given a certain GST cell length. Indeed, to obtain critical coupling and therefore
to minimize the energy cost of plasticity, the longer the GST cell the higher the required coupling
coefficient (and thus the smaller the coupling gap, i.e. the distance between the straight waveguides
and the ring waveguide). In practice, a 2D parameter sweep (over the GST length and the coupling
gap) had to be fabricated, in order to determine the best combination between the two parameters
(a view of our design is showed in Fig. 8). We also tried two different values for the RR radius, namely
7um and 15um (the latter showed better performances and was then selected for the plastic reservoir
network design).

Figure 8. View of our design comprising two 2D parameter sweep of our single building-block device
(plastic node). The silicon RRs in the left block have a radius of 7um, the ones in the right block have a
radius of 15um. In each block, along the vertical direction the RR coupling gap is changed, along the
horizontal direction the GST cell length is changed.

Eventually, we could consistently fabricate devices with a GST cell length not shorter than 1um.
However, fortunately this provided satisfying energy efficiency and contrast of memory operations
(significantly more than what our simulations predicted), given a suitable RR coupling gap.

In order to extract the most relevant information from the relatively large number of fabricated single
devices, we performed the following two types of measurements:

e Automatic transmission spectra acquisition: by means of our automatic setup (it can
automatically align input and output optical fibers to the grating couplers on the photonic
chip) we measured the response of the RRs at both output ports to a low-power and constant
input laser beam for different wavelengths around 1550nm (e.g., from 1530nm to 1570nm
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with 0.01nm steps). The acquired spectra provided important information on the energy
efficiency of the fabricated devices and on the impact of fabrication errors.

High-power high-speed measurements: optical pulses (with durations from few s to tens of
us and peak power around 10mW on-chip) were inserted into the plastic nodes to change the
memory state of the GST cell. Then, spectra were acquired to check the impact of those
changes on the linear transmission of the RRs. These measurements provided important
insight into the energy efficiency and contrast of memory operations (considering both
amorphization and recrystallization of the GST thin film).

More details regarding the outcome of these measurements are given in Deliverable D3.3.

Figure 9. Magnified picture of fabricated single plastic nodes on a silicon-on-insulator (SOI) chip. One device is being

measured by coupling its grating couplers with two (input and output) optical fibers.

5 DESIGN AND FABRICATION OF PLASTIC RESERVOIR NETWORKS WITH SELF-
LEARNING CAPABILITIES

Exploiting the insight regarding building-block parameters and network topology obtained through
the simulations and measurements presented in the previous sections, we have designed several
versions of the proposed photonic reservoirs, for two different approaches of fabricating silicon
photonic integrated circuits:

Fabrication through electron-beam lithography by the MUENSTER partners (a design overview
is shown in Fig. 10), that is the same approach we used to fabricate the chips for single plastic
nodes investigation, as presented in the previous section. This option allows to fabricate few
chips relatively fast, but there is a significant chance that a fabrication step goes wrong, which
can sometimes be found out only after measuring the chips. Moreover, the properties of
nominally the same photonic component might change significantly from one chip to another,
or even depending on the position on the chip area. Another downside is that the fabrication
errors affecting waveguides and grating couplers limit the quality (Q-factor and finesse) of RRs
and the efficiency of coupling the measurement setup with the photonic circuits, which in turn
limits the scalability of viable reservoir networks.
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e Fabrication by Imec’s foundry*® (a design overview is shown in Fig. 11), which is costly and can
take several months (up to one year) but allows to obtain several tens of high quality silicon
photonic chips. This is a highly reproducible and CMOS compatible fabrication, providing low-
loss waveguides and highly efficient grating couplers, thus allowing to obtain more energy
efficient and scalable silicon RRs networks. A downside regarding our specific case is that the
OXFORD partners have to accurately etch windows through the chip’s oxide overlayer in order
to deposit GST on the waveguides. This is a difficult operation that requires many trials.

We chose to go for both options in parallel in order to increase the likelihood to obtain at least one
chip with working plastic reservoir networks. Fortunately, we could achieve this via the first option
(see picture of part of the integrated photonic circuits in Fig. 12), while the second fabrication option
took significantly more time than expected (at the moment —i.e. June 2022 - we have just obtained
some first chips without GST cells, but we still have to test them). In any case, while the chips obtained
from the first fabrication option contain an important first hardware demonstrator for proof-of-
principle measurements, the chips from the second option will allow us to investigate more scaled-up
and advanced neuromorphic computing applications.
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Figure 10. Photonic integrated circuit design for fabrication through electron-beam lithography (first fabrication option). The
design comprises single-device test structures (at the sides) and different versions of plastic reservoir networks, with
variations in topologies, network dimensions, single-devices properties (such as RR coupling coefficients) and GST cells
density.

13 See for example https://europractice-ic.com/technologies/photonics/imec/
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Figure 11. Photonic integrated circuit design for fabrication by Imec’s foundry (second fabrication option). The design
comprises single-device test structures and different versions of plastic reservoir networks, with variations in topologies,
network dimensions, single-devices properties (such as RR coupling coefficients) and GST cells density. In particular, the
higher waveguide quality provided by this fabrication option allowed us sweep over a larger range of RR coupling coefficients.
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Figure 12. Magnified picture of fabricated plastic reservoir networks on a silicon-on-insulator (SOI) chip.

In order to demonstrate self-learning RC, we inserted different classes of pulse sequences into
different reservoir network versions (similarly as in the system-level simulations described in Section
3) and we first investigated how the output was modified by the solid-state phase of the GST cells that
were plastically adapting to the input signal. Promisingly, we observed that the plastic non-volatile
changes had a significant impact on the output signal, and that this impact was strongly dependent
on the previously inserted sequences. Importantly, such a rich plastic behaviour was detected
concurrently with a strong nonlinear distortion of the input signal, ascribed to the silicon nonlinear
effects affecting the resonant behaviour of the RRs in the network. Therefore, as planned (see Section
1), our reservoir networks showed both volatile and non-volatile memory, together with nonlinearity.
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Afterwards, in accordance with the RC paradigm, we trained a linear classifier to classify the input
pulse sequences by employing the reservoir output. We observed that the classification performance
was significantly improved by the reservoir presence and that such an improvement was strongly
modified by the plastic adaptation of the network. The details regarding the employed reservoir
networks, measurements and results are presented in Deliverable 3.3.

6 CONCLUSIONS

We have discussed the most relevant aspects and steps of our research on the development of a
reservoir computing system based on an integrated photonic network, which, enhanced by N-vN unit
cells, can plastically adapt to its input and has self-learning capabilities (i.e. the performance of a
tackled machine learning task can be improved by the autonomous adaptation of the network,
without the aid of an external learning algorithm that tunes the network parameters). In particular:

e We developed an efficient numerical model of a silicon ring resonator with a GST cell on its
waveguide, which accounts for the nonlinear dynamics due to the silicon nonlinear effects
affecting the ring resonance, and for the solid-state phase change of the GST thin film due to
optical pulses (all-optical non-volatile memory operations).

e By employing the developed model, we showed via numerical simulations that this device
(especially when short GST cells (< 1um) are employed) is a promising candidate for a plastic
node in a photonic reservoir. In particular, the combination of resonant behaviour and
nonlinear effects allows to enhance the energy efficiency of memory operations and the
scalability of networks based on this building block.

e By connecting multiple instances of the developed numerical model, we simulated networks
comprising several silicon RRs (with and without GST cell) and showed that these can operate
as photonic reservoir to carry out machine learning tasks such as classification of optical pulse
sequences. Moreover, we showed that the classification performance of a given sequence
class can be improved by means of a scalable training algorithm that exploits the reservoir
network plasticity. Importantly, such a training method does not require external tunability of
the network weights and observability of the internal states, as opposed to non-biologically-
plausible training algorithms based on backpropagation.

e We designed, fabricated and measured several versions of the plastic node (silicon RRs with a
GST cell) in order to experimentally investigate the energy efficiency and contrast of non-
volatile memory operations, and to determine the most suitable design parameters for
deployment in plastic reservoir networks.

o We designed several versions of plastic reservoir networks for two different silicon photonics
fabrication options. One is performed by the project partners and takes a relatively short time,
but provides less reproducible circuits and larger fabrication errors affecting the basic
photonic components. The other takes a longer time, but provides several tens of high-quality
photonic chips. Via the first fabrication option, we managed to fabricate working plastic
reservoir networks. In particular, we found that the performances of the RC system in pulse
sequences classification is strongly dependent on the non-volatile memory state of the GST
cells, that canin turn be changed by the input signal. Therefore, our plastic reservoir networks
meet the basic requirements for self-learning behaviour based on network plasticity.

More details regarding the measurements and experimental results are presented in Deliverable 3.3.
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