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Second cross-disciplinary training session and associated training 
webinars/videos 

The Fun-COMP project brings together partners with expertise spanning a wide 
range of scientific and technical disciplines. To help ensure that such expertise is 
shared between partners, and to help to increase public awareness in the 
science and technology underpinning Fun-COMP, two cross-disciplinary training 
workshops will be held during the course of the project.  

The first such training event was held at the University of Oxford on March 18th 
2019 (note that this was formally delayed from month-9 - as in original DoW -  
to month-12 to make coincident with project progress meeting) and has been 
reported in Deliverable D5.7 

The second training event was also held at the University of Oxford, on August 
22nd 2019, and focused on integrated photonics systems. This event, which we 
entitled “Conversations on the Future of Integrated Photonics and Computing”, 
consisted of two main sessions, as follows: 

1) An invited tutorial presentation by Prof Paul Prucnal, MIT, on Advances in 
Neuromorphic Silicon Photonics 

2) A panel session on The Future of Photonic Computing, in which Prof Prucnal, 
Fun-COMP WP leaders and the audience discussed key technical challenges 
facing the development of photonic computing technology. 

The training session was attended by a wide-ranging audience including young 
PhD and post-doc scientists from partner laboratories, as well as editors of 
academic journals, representatives of EPSEC (UK funding council) and local 
(Oxford) PhD and post-doc researchers. 

A copy of the presentation made by Prof Prucnal is attached to this deliverable 
report and currently available on the partner-only pages of the Fun-COMP 
website (www. fun-comp.org), but will be migrated to the private pages as soon 
as possible confidentiality issues have been addressed. See 

https://fun-comp.org/research-contents/project-deliverables/ 
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ADVANCES IN
NEUROMORPHIC SILICON PHOTONICS

Paul R. Prucnal & Bhavin J. Shastri 
Princeton & Queen’s Universities
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Outline

q Motivation
– Artificial intelligence; neural networks
– Recent work on photonic information processing

q Silicon Photonic Neural Networks
– Micro-ring weight banks: vector multiplications
– Micro-ring modulator nonlinearity

q Applications
– Winner Take All Demonstration
– Nonlinear Programming
– Processing GHz RF Signals

q Conclusion
– Challenges in Making This a Reality
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Rise of Artificial Intelligence
q Natural language 

processing; Siri, Cortana, 
Alexa, Google

q Game playing (Go) and 
Chess; beating World 
Champions

q Face recognition
q YouTube, Netflix, Google 

Maps, Amazon
q Medicine and healthcare
q Autonomous vehicles 
q Control and optimization

LeCun, Bengio, Hinton Nature 521 (2015)
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Types and Functions of Neural Networks

Feedforward Recurrent
Multi-layered 

(deep) network

W

Train W (minimize error) for 
recognition tasks

Learning, control & 
optimization

v h

Feature extraction 
and classification
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Computational Speed Limitations

Deep Learning Compute
(doubling every 3.5 months)

Moore’s Law If Continued

Dropout Visualizing and Understanding
Conv Nets

Seq2Seq

DeepSpeech2

Xception

Neural Architecture Search

Neural Machine Translation

VGG

ResNet-200

Deep learning dominates HPC… exceeding the available compute capacity.

https://blog.openai.com/ai-and-compute/

AlphaGo Zero

1920 CPUs 
280 GPUs
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Hz-
kHz

kHz-
MHz

- Speech recognition/processing
- Executed in cloud (taxing for mobile)

Siri 
Ti

m
e 

Sc
al

e

Object recognitionSpeech recognition

Real-time (deep) surveillance

Time Scales of Applications & Technologies

Machine Learning 
with Computers

(AI software)

Neuromorphic 
Electronics 

(special purpose 
hardware)

Prucnal, Shastri et al. Adv. Opt. Photonics 8 (2016)
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Tradeoff: challenge being fast and complex

Physical Limitations
• Interconnection density: capacitive 

loading, EMI, topological constraints
• Bandwidth: ∝ 1/N2 (N=wires)
• Energy efficiency: limited by electron 

tunneling (leakage) through gates

Time Scales of Applications & Technologies

Hz-
kHz

kHz-
MHz

Prucnal, Shastri et al. Adv. Opt. Photonics 8 (2016)
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GHz
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Tradeoff: challenge being fast and complex

Physical Limitations
• Interconnection density: capacitive 

loading, EMI, topological constraints
• Bandwidth: ∝ 1/N2 (N=wires)
• Energy efficiency: limited by electron 

tunneling (leakage) through gates

Time Scales of Applications & Technologies

Neuromorphic 
Photonics
(hardware)

Nonlinear OptimizationDeep Learning 
Acceleration

Machine Learning 
with Computers

(AI software)

Neuromorphic 
Electronics 

(special purpose 
hardware)

Hz-
kHz

kHz-
MHz

Prucnal, Shastri et al. Adv. Opt. Photonics 8 (2016)

Enables new applications that 
can’t be achieved with 

electronics, such as in RF.
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Robert Keyes’ main criticisms of digital optical computing in the 1980’s: A 2019 perspective

• Fan-out

• Physical cascadability
• Logic level restoration
• Input-output isolation
• Large-signal gain

• Large system integration
• Cost relative to 

microelectronics
• Footprint

• Fabrication precision
• Stability/sensitivity
• Individual adjustment

WDM, Analog 

O/E/O signal pathway

In-package CMOS control

Silicon photonic integration

Then: Problems Now: Silicon Photonic Solutions

R. W. Keyes, Optical Logic: In the light of computer technology Optica Acta, 32 (5), 1985  (IBM)
R. W. Keyes, What makes a good computer device? Science, 230, pp.138–144, 1985

Then: Problems

Optics & Computing--Why now?
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spectrum from an input RF signal under a small signal condition
[38,39]. The chip is programmed into a circuit comprising a cas-
cade of two ring resonators [as the delay line in Fig. 2(b)], whose
resonance frequency and resonance strength are controllable via
phase shifters ϕn and couplers κn, respectively, [32]. We program
the two ring resonators such that Ring 1 and Ring 2 have their
resonance frequencies in the upper and lower modulation side-
bands, respectively, and both feature a sharp phase transition
and a significant amplitude notch around the resonance frequency
and nearly flat phases and amplitudes outside (for simplicity, we
consider here only the resonance effect for normal dispersions
[32]). The equivalent RF responses of the two sidebands after
direct detection are depicted alongside, assuming a high-speed
photodetector providing sufficient RF bandwidth. The high-
lighted area exhibits a frequency region where the two RF
responses have nearly equal amplitudes and a phase difference
of π, in contrast to the equal-phase areas on its two sides.

Eventually, these two RF responses add up vectorially at the
photodetector output, resulting in an RF filter as illustrated in
Fig. 3: a band-stop filter or a bandpass filter, depending on
the phase relation between the optical carrier and the sidebands
at the modulator output. In practice, a dual-parallel MZ modu-
lator can be used to provide the desired optical spectrum with
either in-phase or complementary-phase sidebands (Fig. 3) by
controlling the modulator biases [40,41]. Moreover, the pro-
grammability of the chip also allows us to implement an RF filter
using a conventional microwave photonic approach based on sin-
gle-sideband modulation [42], where the chip is programmed
into an optical filter [e.g., a notch filter as in Fig. 2(b)].
Although also easy to implement, this conventional approach re-
quires an additional processing step to remove one modulation
sideband, which increases the system complexity and leads to
an extra 3 dB loss in the system gain.

To verify the approach illustrated in Fig. 3, measurements of
RF filter responses were performed for both the band-stop and
bandpass cases (see Supplement 1). In Figs. 4(a) and 4(b), the
measurements show clearly that a band-stop and a bandpass filter
can be generated, both having passband–stopband extinctions
> 17 dB and passband dispersions < 2 ps∕MHz. The fitted
curves show that the measured filter shapes are consistent with
the theoretical filter transfer function (see Supplement 1). In
Figs. 4(c) and 4(d), we demonstrate continuous tuning of the fil-
ter center frequency without changes in filter shape. This is per-
formed by controlling the phase shifters !ϕ1;ϕ2" of the two ring
resonators such that Δf 1 and Δf 2 (as referred to in Fig. 3) are
shifted simultaneously with a constant Δf RF # jΔf 1 − Δf 2j.
Subject to the frequency periodicity of ring resonators, the maxi-
mum frequency coverage of the RF filter equals half of the ring
resonator FSR, that is, 14 GHz in this case. Here, we demonstrate
frequency tuning from 1.6 to 6 GHz (31% of the ring resonator
FSR), showing a frequency coverage greater than two octaves. It is
worth mentioning that a two-octave frequency coverage in com-
bination with continuous frequency tuning is difficult to achieve
with electronic RF filters [43–46]. Besides, our RF filter employs
only two tuning elements !ϕ1;ϕ2" to perform frequency tuning,
implying easy control.

Fig. 2. (a) Schematic and a photo of the demonstrator chip fabricated using a commercial Si3N4 waveguide technology (TriPleX). (b) Four different
circuit configurations created by programming the phase-tuning elements in the chip and the measurements of their corresponding frequency response
shapes.

Fig. 3. Schematic of the microwave photonic system and an illustra-
tion of the working principle to implement an RF filter (CW, continuous
wave; LSB/USB, lower/upper sideband; OC, optical carrier; PD,
photodetection).

Research Article Vol. 2, No. 10 / October 2015 / Optica 856

Silicon
Industry

Analog
Photonics

Scalable
Computing

Models
J. Goodman et al. (1978)

Hybrid optical neural networks: S. Jutamulia and F. T. S. Yu 61 

inputs from all neurons on the previous layer and 
sending the same output to all neurons on the next 
layer. The interconnection weights are represented 
by real numbers including zero, positive and 
negative; 

(3) the output of a neuron is binary; 
(4) the signals collectively propagate in parallel in one 

direction, known as feed-forward. 

The data are represented by the pattern of the neuron 
status. It is believed that virtually any mathematical 
relation between input and output can be represented by 
and stored in the interconnection pattern of the 
network. At first glance, it would be extremely difficult, 
if not impossible, to translate a mathematical relation 
into the interconnection pattern. However, based on a 
specific method, called learning, the mathematical 
relation can be automatically translated and 
transplanted in the interconnection by repeatedly 
adjusting the network with correct input-output pairs. 
It is important to note that the network does not 
memorize the input-output pairs; instead, the network 
synthesizes the mathematical relation between input and 
output, and stores the synthesized relation as the 
interconnection pattern. The synthesized relation is 
improved every time a new input-output pair is given to 
the network, which is known as training. Since the 
relation is stored instead of memorizing input-output 
pairs, when a new input that has never been given is 
received by the network, it will produce a correct output 
according to the stored generalized relation. 

This capability is extremely useful when the 
mathematical relation between input and output is fuzzy 
and hard to explain. For example, it is difficult to write 
an explicit instruction set for a computer to recognize a 
human face that changes due to emotion, viewing angle, 
shadow, etc. However, by giving a number of input- 
output pairs, in which the input is the face of the same 
person under different conditions and the output is that 
person’s name, the network will be able to correlate 
different pictures of the face of that person to the 
person’s name, since the network has extracted the 
features of the face in the training process. 

We have seen that, in principle, neural networks meet 
the requirements of (1) recognition capability and (2) 
learning capability that we discussed in the motivation 
for neural networks. Nevertheless, neural networks are 
by no means always superior to von Neumann type 
serial computers, for as we know, our brain, the best 
neural network, performs scientific calculation or 

Interconnection 

InIIut OUtDUt 
NIUrOt3S Neurons 

Fig. 2 Schematic diagram of a two-layer neural network 

Fig. 3 Incoherent matrix-vector multiplier 

number crunching very poorly as compared with a serial 
computer or even a cheap electronic calculator. 

Optical implementation 

Matrix-vector multiplier 

Equation (1) can be written as 

zj =filYj + Qj} 
where 

,Vj = C WjiXi (5) 

Although it is difficult to realize the whole of Equation 
(4) optically, Equation (5), which is a matrix-vector 
multiplication, is almost straightforwardly 
implementable by optical means. Equation (4) can be 
implemented electronically’. The optical 
implementation of the matrix-vector multiplication is 
based on the system proposed by Goodman et aL9, as 
shown schematically in Fig. 3. The elements of the 
vector xi are entered in parallel by controlling the 
intensities of a horizontal array of light-emitting diodes 
(LEDs). Spherical lens L1 collimates the light from each 
LED. The collimated light is then focused to a line by 
cylindrical lens L2. The light from each LED spreads 
vertically to fill an entire column of the matrix mask M 
containing wii. After passing the matrix mask M, the 
light from each element of the mask is collimated in the 
horizontal direction by a cylindrical lenslet array LA, 
the direction of rays in the vertical plane is unchanged. 
Every collimated light ray on the horizontal plane is 
unaffected by cylindrical lens L3 and is directly focused 
by spherical lens L4 on the focal plane with the distance 
J The spreading light from each element on the vertical 
plane forms the image of the element after passing 
cylindrical lens L3 and spherical lens L4 at the same 
distance f, provided the focal length of L3 isf, and the 
distance from the mask to the combination of L3 and L4 
is alsof. Thus, the image of every column of the mask 
has been moved to the centre of the focal plane of La. 
The light from a row on the mask is effectively focused 
at a point. A vertical detector array detects the resulting 
matrix-vector multiplication yj . 

The main problem of an incoherent optical processor is 
that it cannot handle positive and negative values at the 
same time. Therefore, the matrix-vector multiplier 
mentioned above is used only for a unipolar vector and 
matrix. In a neural network, the vector is typically 
binary and thus it can be represented by 1 and 0. Since 
the matrix is usually bipolar, we need two channels of 
the matrix-vector multiplier for the positive and negative 
values. The final positive and negative results can be 
combined electronically, as shown in the very first paper 
on optical neural networks’. The positive and negative 
channels can be encoded in two orthogonal 

Free-space Linear NNs
Challenge: integration, nonlinearity

Neuromorphic Electronics
Challenge: bandwidth

L. Zhuang et al. (2015)

P. Merolla et al. (2014)

Prucnal & Shastri, Neuromorphic Photonics CRC Press (2017)

Neuromorphic Photonics

Optics & Computing--Why now?
Integrated RF photonics
Challenge: programmability

Deep learning, spiking, machine learning

Microwave 
signal 

processing 

Silicon photonics,
electronics+photonics
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1) Photonic Reservoir Computing:

3) Coherent Optical Neural Networks:

2) Multiwavelength Neural Networks:

MIT Stanford

Princeton & GWUPrinceton

UIB, Spain

Ghent

FEMTO-ST, France

(Relinquished their claims at IEEE Summer Topical)
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4) Photonic Spiking Neural Networks:

Princeton

UIB, Spain & Université de Nice

LPN-CNRS, France

Princeton

Strathclyde & Essex

Exeter, Oxford, Munster
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5) Diffractive Optics:

6) Ising Machines:

7) Other Computing and Superconducting approaches:

UCLA

FEMTO-ST, France

Stanford & NTT

UPenn

NIST
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1) Photonic Reservoir Computing

Increasing dimensions facilitates classification

Echo State Network or Liquid State Machine

• Reservoir (random recurrent connections) increases 
number of dimensions

• Output layer trained to do linear classification

see *

Jaeger, Haas Science 304 (2004)
Maass, et al, Network: Comput. 14 (2002)

Appeltant et al, Nat. Commun. 2 (2011)
• Weights are time multiplexed
• Single nonlinear laser node (NL)
• Fiber loop creates recurrent network
• More nodes increases latency (with same NL)

Photonic implementation with delayed feedback
Larger et al. Opt. Express 20 (2012)
Appeltant et al, Nat. Commun. 2 (2011)

• Spoken digit (0, 1,…9) classification, 5 GHz bandwidth
• Lowest error near laser threshold current (highest 

nonlinearity)

Brunner et al, Nat. Commun. 4 (2012)
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2) Coherent Optical Neural Network

Shen, Harris, Englund, Soljacic et al, Nat. Photon. 11 (2017)

Simulated nonlinearity

• This is a vector-matrix multiplier 
corresponding to a neuron front-end. 

• Any matrix M can be represented by 
standard singular value decomposition:
𝑀 = 𝑈ΣV' with 𝑈, V' unitary matrices.

• Implement 𝑈 and V' with MZI, which has 
unitary Jones matrix (below)

• Diagonal weights Σ implemented with 
MZM.

U =

✓
ei� sin(✓/2) ei� cos(✓/2)
cos(✓/2) � sin(✓/2)

◆

<latexit sha1_base64="LiUixbWNTVAop+V/ByO9T/ao2Ko="></latexit>

Optical nonlinearity was not implemented.
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3) Photonic Spiking Neurons

Romeira et al. Sci. Rep. (2016)

Review Article Advances in Optics and Photonics 11

Fig. 12. (a) Cutaway architecture (showing a terraced view of the center) of the hybrid InGaAsP-silicon evanescent laser neuron
design with graphene layers sandwiched in between the Si and III-V layers. This platform includes III-V materials that are bonded
to underlying passive silicon photonic interconnection networks. In a typical device, optical modes are hybridized between the
silicon and III-V layers simultaneously [111]. Nanostructures necessary for waveguides, resonators, and gratings are fabricated
strictly in silicon, while the III-V layers provide optical gain [112, 113]. The use of a DFB cavity guarantees a single longitudinal
lasing mode, defined through the lithographic definition of lasing wavelength via SOI grating pitch. From [31]. (b) Sketch and
scanning electron microscope (SEM) image of the micropillar laser with SA (see text). A vertical micropillar laser in a III-V material
stack is surrounded by a SiN oxide. Pump light (red arrow) is incoming from the top and is partially reflected from the remaining
part of the lower Bragg mirror. From [37].

the semiconductor gain and absorber sections are isolated electrically with a proton implantation region [115], and a separate implant
provides a smaller lifetime in the absorber section.

Shastri et al. theoretically [85] and experimentally [31] demonstrated a fiber-based graphene excitable laser and also proposed
an integrated device that contains electrically pumped quantum wells (gain section), two sheets of graphene (SA section), and a
distributed feedback-grating (section). Since its emergence as a new type of SA, graphene has been rigorously studied in the context of
passive mode locking and Q-switching [116–119] and has been preferred over the widely used semiconductor saturable absorbers [120]
due to its high saturable absorption to volume ratio [121]. Graphene possesses a number of other important advantages that are
particularly useful in the context of processing, including a very fast response time, wideband frequency tunability (useful for WDM
networks), and a tunable modulation depth. Furthermore, graphene also has a high thermal conductivity and damage threshold
compared to semiconductor absorbers.

Fig. 12 shows the integrated excitable laser in a hybrid InGaAsP-graphene-silicon platform. It comprises a III-V epitaxial structure
with multiple quantum well (MQW) region bonded to a low-loss silicon rib waveguide that rests on a silicon-on-insulator (SOI)
substrate. Sandwiched in between is a heterostructure of two monolayer graphene sheets and an hexagonal boron nitride (hBN) spacer.
The cavity and waveguide are formed by the presence of a half-wavelength grating in the silicon. Silicon gratings provide feedback for
the lasing cavity. The full cavity structure includes III-V layers bonded to silicon, and a quarter-shifted wavelength grating (quarter
shift not shown). The silicon waveguide has height, width, and rib etch of 1.5 µm, 500 nm, and 300 nm respectively. The length of
cavity is 120 µm. The laser emits light along the waveguide structure into a passive silicon network. The hybrid III-V platform is
highly scalable and amenable to both passive and active photonic integration [112].

Shastri et al. [31] compare the simulated (predicted) performance of the integrated device with those obtained experimentally
with an analogous fiber-based prototype. The former is capable of exhibiting the same behaviors, but on a much faster time scale
and with lower pulse energies. Some key behaviors associated with excitability are shown in Fig. 13. Fig. 13(a) shows the output
pulse width as a function of an input pulse for both the integrated and fiber lasers. Although the pulse profile stays the same, its
amplitude may change depending on the value of the perturbation. The integrated device exhibits the same behavior on a much faster
time scale, recovering in nanoseconds with pulse widths in picoseconds, a factor of about ⇠ 103 and ⇠ 106, respectively than the
fiber prototype. The width of the pulses—which puts a lower bound on the temporal resolution of the information encoded between
spikes—is bounded by both the SA recovery time and the round trip cavity time. Although graphene’s incredibly fast response time
(⇠ 2 ps) makes it effectively instantaneous in the fiber lasers, simulations suggest that graphene can shorten the pulse widths in an
integrated device. The relative refractory period on the other hand is bounded by the speed of either the gain or the SA, although the
gain recovery times tends to be larger.

Temporal pulse correlation is an important processing function that emerges from excitability. A integrating excitable system is
able to sum together multiple inputs if they are close enough to one another in time. This allows for the detection of pulse clusters,
or potentially, coincidence detection of pulses across channels through the use of incoherent optical summing [28]. Coincidence
detection underlies a number of processing tasks, including associative memory [122] and STDP [107, 108], a form of temporal learning.
Temporal pulse correlation in the fiber laser experiment and simulation, and integrated laser simulation are shown in Fig. 13(b).
Reducing the time interval between input pulses (i.e. simultaneous arrival) results in an output pulse. Although the fiber laser can
function at kHz speeds, the internal dynamics of the integrated device allow it to function much faster, putting it in the GHz regime.

Figure 14(a)–(c) illustrate the typical transient excitable dynamics of a gain-SA laser. In this system, an excitatory pulse increases the

Gain-SA Lasers

Selmi, Barbay et al. Phy. Rev. Lett. 112 (2014)

Semiconductor Ring & Microdisk Lasers

L. Gelens et al. Phy. Rev. A. 82 (2010)
Van Vaerenbergh et al. Opt. Express 21 (2013)

Resonant Tunneling Diode—LD

Prucnal, Shastri et al. Adv. Opt. Photonics 8 (2016)

Some of these devices require optical injection, and are therefore not compatible with optical fan-
in, an optical matched filter front-end, or WDM interconnects.

Nahmias, Shastri, Prucnal et al. IEEE JSTQE 19 (2013)

Gain SA

+V

-V

DC bias

λj
G(t)

<latexit sha1_base64="8bcnfRgzU1tVulEIwjlwBGRH+Gc=">AAAB63icbVA9SwNBEN2LXzF+RS1tFoMQm3AXBS0sAhZaRjAfkBxhb7OXLNndO3bnhHDkL9hYKGLrH7Lz37iXXKGJDwYe780wMy+IBTfgut9OYW19Y3OruF3a2d3bPygfHrVNlGjKWjQSke4GxDDBFWsBB8G6sWZEBoJ1gslt5neemDY8Uo8wjZkvyUjxkFMCmXRXhfNBueLW3DnwKvFyUkE5moPyV38Y0UQyBVQQY3qeG4OfEg2cCjYr9RPDYkInZMR6lioimfHT+a0zfGaVIQ4jbUsBnqu/J1IijZnKwHZKAmOz7GXif14vgfDaT7mKE2CKLhaFicAQ4exxPOSaURBTSwjV3N6K6ZhoQsHGU7IheMsvr5J2veZd1OoPl5XGTR5HEZ2gU1RFHrpCDXSPmqiFKBqjZ/SK3hzpvDjvzseiteDkM8foD5zPHzZyjaw=</latexit>

Q(t)
<latexit sha1_base64="RqjhMPFc46i6BAaBisboYsOlzrM=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoMQm3AXBS0sAjaWCZgPSI6wt9lLluzuHbt7QjjyF2wsFLH1D9n5b9xLrtDEBwOP92aYmRfEnGnjut9OYWNza3unuFva2z84PCofn3R0lChC2yTikeoFWFPOJG0bZjjtxYpiEXDaDab3md99okqzSD6aWUx9gceShYxgk0mtqrkclituzV0ArRMvJxXI0RyWvwajiCSCSkM41rrvubHxU6wMI5zOS4NE0xiTKR7TvqUSC6r9dHHrHF1YZYTCSNmSBi3U3xMpFlrPRGA7BTYTvepl4n9ePzHhrZ8yGSeGSrJcFCYcmQhlj6MRU5QYPrMEE8XsrYhMsMLE2HhKNgRv9eV10qnXvKtavXVdadzlcRThDM6hCh7cQAMeoAltIDCBZ3iFN0c4L86787FsLTj5zCn8gfP5A0W4jbY=</latexit>

I(t)
<latexit sha1_base64="I97U+gjz53cJI2JphjkM2AGSFKE=">AAAB63icbVA9SwNBEN2LXzF+RS1tFoMQm3AXBS0sAjbaRTAfkBxhb7OXLNndO3bnhHDkL9hYKGLrH7Lz37iXXKGJDwYe780wMy+IBTfgut9OYW19Y3OruF3a2d3bPygfHrVNlGjKWjQSke4GxDDBFWsBB8G6sWZEBoJ1gslt5neemDY8Uo8wjZkvyUjxkFMCmXRfhfNBueLW3DnwKvFyUkE5moPyV38Y0UQyBVQQY3qeG4OfEg2cCjYr9RPDYkInZMR6lioimfHT+a0zfGaVIQ4jbUsBnqu/J1IijZnKwHZKAmOz7GXif14vgfDaT7mKE2CKLhaFicAQ4exxPOSaURBTSwjV3N6K6ZhoQsHGU7IheMsvr5J2veZd1OoPl5XGTR5HEZ2gU1RFHrpCDXSHmqiFKBqjZ/SK3hzpvDjvzseiteDkM8foD5zPHzmAja4=</latexit>

�j
<latexit sha1_base64="IAfO3/JNC8MARFiniRvU8BCCQvg=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqszUgi5cFNy4rGAf0g4lk8m0sUlmSDJCGfoVblwo4tbPceffmLaz0NYDgcM555J7T5Bwpo3rfjuFtfWNza3idmlnd2//oHx41NZxqghtkZjHqhtgTTmTtGWY4bSbKIpFwGknGN/M/M4TVZrF8t5MEuoLPJQsYgQbKz30uY2GePA4KFfcqjsHWiVeTiqQozkof/XDmKSCSkM41rrnuYnxM6wMI5xOS/1U0wSTMR7SnqUSC6r9bL7wFJ1ZJURRrOyTBs3V3xMZFlpPRGCTApuRXvZm4n9eLzXRlZ8xmaSGSrL4KEo5MjGaXY9CpigxfGIJJorZXREZYYWJsR2VbAne8smrpF2rehfV2l290rjO6yjCCZzCOXhwCQ24hSa0gICAZ3iFN0c5L86787GIFpx85hj+wPn8AbyzkFg=</latexit>

�1, ...�N
<latexit sha1_base64="se8yFCz31aO6j3R7DTFppRhNGzA=">AAAB/3icbVDLSsNAFL3xWesrKrhxEyyCCwlJFXThouDGlVSwD2hDmEwm7dDJJMxMhBK78FfcuFDErb/hzr9x2kbQ1gMDZ845l7lzgpRRqRzny1hYXFpeWS2tldc3Nre2zZ3dpkwygUkDJywR7QBJwignDUUVI+1UEBQHjLSCwdXYb90TIWnC79QwJV6MepxGFCOlJd/c7zIdDpHvnti2/XO58c2KYzsTWPPELUgFCtR987MbJjiLCVeYISk7rpMqL0dCUczIqNzNJEkRHqAe6WjKUUykl0/2H1lHWgmtKBH6cGVN1N8TOYqlHMaBTsZI9eWsNxb/8zqZii68nPI0U4Tj6UNRxiyVWOMyrJAKghUbaoKwoHpXC/eRQFjpysq6BHf2y/OkWbXdU7t6e1apXRZ1lOAADuEYXDiHGlxDHRqA4QGe4AVejUfj2Xgz3qfRBaOY2YM/MD6+AUFRlPI=</latexit>

I(t)
<latexit sha1_base64="I97U+gjz53cJI2JphjkM2AGSFKE=">AAAB63icbVA9SwNBEN2LXzF+RS1tFoMQm3AXBS0sAjbaRTAfkBxhb7OXLNndO3bnhHDkL9hYKGLrH7Lz37iXXKGJDwYe780wMy+IBTfgut9OYW19Y3OruF3a2d3bPygfHrVNlGjKWjQSke4GxDDBFWsBB8G6sWZEBoJ1gslt5neemDY8Uo8wjZkvyUjxkFMCmXRfhfNBueLW3DnwKvFyUkE5moPyV38Y0UQyBVQQY3qeG4OfEg2cCjYr9RPDYkInZMR6lioimfHT+a0zfGaVIQ4jbUsBnqu/J1IijZnKwHZKAmOz7GXif14vgfDaT7mKE2CKLhaFicAQ4exxPOSaURBTSwjV3N6K6ZhoQsHGU7IheMsvr5J2veZd1OoPl5XGTR5HEZ2gU1RFHrpCDXSHmqiFKBqjZ/SK3hzpvDjvzseiteDkM8foD5zPHzmAja4=</latexit>

G(t)
<latexit sha1_base64="8bcnfRgzU1tVulEIwjlwBGRH+Gc=">AAAB63icbVA9SwNBEN2LXzF+RS1tFoMQm3AXBS0sAhZaRjAfkBxhb7OXLNndO3bnhHDkL9hYKGLrH7Lz37iXXKGJDwYe780wMy+IBTfgut9OYW19Y3OruF3a2d3bPygfHrVNlGjKWjQSke4GxDDBFWsBB8G6sWZEBoJ1gslt5neemDY8Uo8wjZkvyUjxkFMCmXRXhfNBueLW3DnwKvFyUkE5moPyV38Y0UQyBVQQY3qeG4OfEg2cCjYr9RPDYkInZMR6lioimfHT+a0zfGaVIQ4jbUsBnqu/J1IijZnKwHZKAmOz7GXif14vgfDaT7mKE2CKLhaFicAQ4exxPOSaURBTSwjV3N6K6ZhoQsHGU7IheMsvr5J2veZd1OoPl5XGTR5HEZ2gU1RFHrpCDXSPmqiFKBqjZ/SK3hzpvDjvzseiteDkM8foD5zPHzZyjaw=</latexit>

Q(t)
<latexit sha1_base64="RqjhMPFc46i6BAaBisboYsOlzrM=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoMQm3AXBS0sAjaWCZgPSI6wt9lLluzuHbt7QjjyF2wsFLH1D9n5b9xLrtDEBwOP92aYmRfEnGnjut9OYWNza3unuFva2z84PCofn3R0lChC2yTikeoFWFPOJG0bZjjtxYpiEXDaDab3md99okqzSD6aWUx9gceShYxgk0mtqrkclituzV0ArRMvJxXI0RyWvwajiCSCSkM41rrvubHxU6wMI5zOS4NE0xiTKR7TvqUSC6r9dHHrHF1YZYTCSNmSBi3U3xMpFlrPRGA7BTYTvepl4n9ePzHhrZ8yGSeGSrJcFCYcmQhlj6MRU5QYPrMEE8XsrYhMsMLE2HhKNgRv9eV10qnXvKtavXVdadzlcRThDM6hCh7cQAMeoAltIDCBZ3iFN0c4L86787FsLTj5zCn8gfP5A0W4jbY=</latexit>

+
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3) Photonic Spiking Neural  Networks

Peng, Shastri, Prucnal et al. IEEE JSTQE 24 (2018)

Gain SA
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Outline

q Motivation
– Artificial intelligence; neural networks
– Recent work on photonic information processing

q Silicon Photonic Neural Networks
– Microring weight banks: vector multiplications
– Microring modulator nonlinearity

q Applications
– Winner Take All Demonstration
– Nonlinear Programming
– Processing GHz RF Signals

q Conclusion
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Neuron Model and Photonic Implementation
q Neuron operation: 1) receive multiple inputs; 2) weight each by coefficient; 3) 

sum them; 4) perform a nonlinear process

q 1-3 is a weighted sum or multiply & accumulate (MAC)

q State variable s is thresholded by a nonlinearity f (decision)
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...
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...

Balanced PD
(summing)

Microring Weight Bank
(weighting)
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Electronic Control

𝑤) 𝑤- 𝑤/ 𝑤,
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sk(t) =
NX

j=1

xj(t)wj

= ~x · ~!
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yk(t) = '[sk(t)]
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Multi-Channel Weighting & Control

DROP

WDM
IN

Si WGs

50 µm
MRR IN+

IN–

THRU

GND

Heaters

Tait, Shastri, Prucnal et al. Opt. Express 24 (2016)
Ma, Shastri, Prucnal et al. Opt. Express 27 (2019)

Control precision: 7 bits + Sign bit

Measured Output of Drop Port

2 ns

c) d)

2 ns

Balanced PD Output
Photogenerated carriers change R; 

sense R to monitor light in ring. 

Red = mean error; Blue = std. dev.
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Silicon Microring Modulator Nonlinearity

nn++

Ib
p p++

GND
500nm

130nm90nm 750nm

Modulator X-section

Tait, Shastri, Prucnal et al. Phys. Rev. Appl. 11 (2019)

Bias current shifts the resonance and loss. Allows engineering the activation function

Electrical
input

GND

P type
N type

Optical 
pump

Through port

Sigmoid ReLU Quadratic

Recurrent 
Hopfield networks 

Feedforward 
(CNNs)

Support vector 
machines (SVMs)

Plasma dispersion effect 
modulates index.

Free carriers can absorb light, 
leading to loss.
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Tuning the Activation Function
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Tait, Shastri, Prucnal et al. Phys. Rev. Appl. 11 (2019)
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Multiwavelength Silicon Photonic Neuron

TIAWDM IN ...
Microring Weight Bank

V+

V–

!" !# !$ !%

THRU

DROP Optical Output

*

PUMP

GND

&'
Modulator

Weighted addition (dot products): Nonlinearity:

Microring Resonator (MRR) Weight Bank PD + Modulator

DROP

WDM
IN

Si WGs

50 µm
MRR IN+

IN–

THRU

GND

Heaters V+V– GND Ih Ib

photodetector 
(PD+)

Al wires

Si WGs

MRR modulator

HeaterGe

IN+

IN–

OUT

Pump

50 µm

photodetector 
(PD–)
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Features:
q Compatible with mainstream foundries
q MRR weight banks for WDM weighting 

- parallel processing & speed of light
q PD+/PD- do summing; provides +ve/-ve weights
q MRR & balanced PD does vector multiplication
q Modulator for fast electro-optic nonlinearity
Metrics:
q Energy efficiency (today): 500fJ/MAC
q Efficiency (foreseeable tech.): 1.1 fJ/MAC
q Speed: 10-40 GHz operation
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λ2

λ4

Neural Network: Broadcast-and-Weight

Wavelength division multiplexing provides all-to-all interconnects

λ3

Photonic Neuron

Broadcast Loop 
Waveguide

Prucnal and Shastri CRC Press 2017
Tait et al. J. Lightw. Technol. 32 (2014)

q Broadcast: no switching 
or routing is required

q N2-connections with 
single waveguide (not N 
wires)

q Bandwidth not limited by 
number of interconnects 
(i.e fan-in)

'
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xj
<latexit sha1_base64="bJS+ZjuRc+bROALVPql5Z/VTD0Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8eK9gPaUDbbSbt2swm7G7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0PfVbj6g0j+W9GSfoR3QgecgZNVa6e+o99MoVt+rOQJaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiJVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14aWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyMmmeVT236t2eV2pXeRxFOIJjOAUPLqAGN1CHBjAYwDO8wpsjnBfn3fmYtxacfOYQ/sD5/AFiFI3Z</latexit><latexit sha1_base64="bJS+ZjuRc+bROALVPql5Z/VTD0Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8eK9gPaUDbbSbt2swm7G7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0PfVbj6g0j+W9GSfoR3QgecgZNVa6e+o99MoVt+rOQJaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiJVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14aWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyMmmeVT236t2eV2pXeRxFOIJjOAUPLqAGN1CHBjAYwDO8wpsjnBfn3fmYtxacfOYQ/sD5/AFiFI3Z</latexit><latexit sha1_base64="bJS+ZjuRc+bROALVPql5Z/VTD0Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8eK9gPaUDbbSbt2swm7G7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0PfVbj6g0j+W9GSfoR3QgecgZNVa6e+o99MoVt+rOQJaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiJVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14aWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyMmmeVT236t2eV2pXeRxFOIJjOAUPLqAGN1CHBjAYwDO8wpsjnBfn3fmYtxacfOYQ/sD5/AFiFI3Z</latexit><latexit sha1_base64="bJS+ZjuRc+bROALVPql5Z/VTD0Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8eK9gPaUDbbSbt2swm7G7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0PfVbj6g0j+W9GSfoR3QgecgZNVa6e+o99MoVt+rOQJaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiJVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14aWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyMmmeVT236t2eV2pXeRxFOIJjOAUPLqAGN1CHBjAYwDO8wpsjnBfn3fmYtxacfOYQ/sD5/AFiFI3Z</latexit><latexit sha1_base64="bJS+ZjuRc+bROALVPql5Z/VTD0Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8eK9gPaUDbbSbt2swm7G7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0PfVbj6g0j+W9GSfoR3QgecgZNVa6e+o99MoVt+rOQJaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiJVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14aWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyMmmeVT236t2eV2pXeRxFOIJjOAUPLqAGN1CHBjAYwDO8wpsjnBfn3fmYtxacfOYQ/sD5/AFiFI3Z</latexit>
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<latexit sha1_base64="+vA39gB1b/+dgmoWc+tcJzYz8qs=">AAACBHicbVC7SgNBFJ2Nrxhfq5ZpBoNgFXZF0CYQtNFGIpgHJOsyO5lNJpnZWWZmxbCksPFXbCwUsfUj7PwbJ8kWmnjgwuGce7n3niBmVGnH+bZyS8srq2v59cLG5tb2jr2711AikZjUsWBCtgKkCKMRqWuqGWnFkiAeMNIMhhcTv3lPpKIiutWjmHgc9SIaUoy0kXy7eAUrsKMS7qeDiju+u+4ITnrIHzz4A98uOWVnCrhI3IyUQIaab391ugInnEQaM6RU23Vi7aVIaooZGRc6iSIxwkPUI21DI8SJ8tLpE2N4aJQuDIU0FWk4VX9PpIgrNeKB6eRI99W8NxH/89qJDs+8lEZxokmEZ4vChEEt4CQR2KWSYM1GhiAsqbkV4j6SCGuTW8GE4M6/vEgax2XXKbs3J6XqeRZHHhTBATgCLjgFVXAJaqAOMHgEz+AVvFlP1ov1bn3MWnNWNrMP/sD6/AGqYJd6</latexit><latexit sha1_base64="+vA39gB1b/+dgmoWc+tcJzYz8qs=">AAACBHicbVC7SgNBFJ2Nrxhfq5ZpBoNgFXZF0CYQtNFGIpgHJOsyO5lNJpnZWWZmxbCksPFXbCwUsfUj7PwbJ8kWmnjgwuGce7n3niBmVGnH+bZyS8srq2v59cLG5tb2jr2711AikZjUsWBCtgKkCKMRqWuqGWnFkiAeMNIMhhcTv3lPpKIiutWjmHgc9SIaUoy0kXy7eAUrsKMS7qeDiju+u+4ITnrIHzz4A98uOWVnCrhI3IyUQIaab391ugInnEQaM6RU23Vi7aVIaooZGRc6iSIxwkPUI21DI8SJ8tLpE2N4aJQuDIU0FWk4VX9PpIgrNeKB6eRI99W8NxH/89qJDs+8lEZxokmEZ4vChEEt4CQR2KWSYM1GhiAsqbkV4j6SCGuTW8GE4M6/vEgax2XXKbs3J6XqeRZHHhTBATgCLjgFVXAJaqAOMHgEz+AVvFlP1ov1bn3MWnNWNrMP/sD6/AGqYJd6</latexit><latexit sha1_base64="+vA39gB1b/+dgmoWc+tcJzYz8qs=">AAACBHicbVC7SgNBFJ2Nrxhfq5ZpBoNgFXZF0CYQtNFGIpgHJOsyO5lNJpnZWWZmxbCksPFXbCwUsfUj7PwbJ8kWmnjgwuGce7n3niBmVGnH+bZyS8srq2v59cLG5tb2jr2711AikZjUsWBCtgKkCKMRqWuqGWnFkiAeMNIMhhcTv3lPpKIiutWjmHgc9SIaUoy0kXy7eAUrsKMS7qeDiju+u+4ITnrIHzz4A98uOWVnCrhI3IyUQIaab391ugInnEQaM6RU23Vi7aVIaooZGRc6iSIxwkPUI21DI8SJ8tLpE2N4aJQuDIU0FWk4VX9PpIgrNeKB6eRI99W8NxH/89qJDs+8lEZxokmEZ4vChEEt4CQR2KWSYM1GhiAsqbkV4j6SCGuTW8GE4M6/vEgax2XXKbs3J6XqeRZHHhTBATgCLjgFVXAJaqAOMHgEz+AVvFlP1ov1bn3MWnNWNrMP/sD6/AGqYJd6</latexit><latexit sha1_base64="+vA39gB1b/+dgmoWc+tcJzYz8qs=">AAACBHicbVC7SgNBFJ2Nrxhfq5ZpBoNgFXZF0CYQtNFGIpgHJOsyO5lNJpnZWWZmxbCksPFXbCwUsfUj7PwbJ8kWmnjgwuGce7n3niBmVGnH+bZyS8srq2v59cLG5tb2jr2711AikZjUsWBCtgKkCKMRqWuqGWnFkiAeMNIMhhcTv3lPpKIiutWjmHgc9SIaUoy0kXy7eAUrsKMS7qeDiju+u+4ITnrIHzz4A98uOWVnCrhI3IyUQIaab391ugInnEQaM6RU23Vi7aVIaooZGRc6iSIxwkPUI21DI8SJ8tLpE2N4aJQuDIU0FWk4VX9PpIgrNeKB6eRI99W8NxH/89qJDs+8lEZxokmEZ4vChEEt4CQR2KWSYM1GhiAsqbkV4j6SCGuTW8GE4M6/vEgax2XXKbs3J6XqeRZHHhTBATgCLjgFVXAJaqAOMHgEz+AVvFlP1ov1bn3MWnNWNrMP/sD6/AGqYJd6</latexit><latexit sha1_base64="+vA39gB1b/+dgmoWc+tcJzYz8qs=">AAACBHicbVC7SgNBFJ2Nrxhfq5ZpBoNgFXZF0CYQtNFGIpgHJOsyO5lNJpnZWWZmxbCksPFXbCwUsfUj7PwbJ8kWmnjgwuGce7n3niBmVGnH+bZyS8srq2v59cLG5tb2jr2711AikZjUsWBCtgKkCKMRqWuqGWnFkiAeMNIMhhcTv3lPpKIiutWjmHgc9SIaUoy0kXy7eAUrsKMS7qeDiju+u+4ITnrIHzz4A98uOWVnCrhI3IyUQIaab391ugInnEQaM6RU23Vi7aVIaooZGRc6iSIxwkPUI21DI8SJ8tLpE2N4aJQuDIU0FWk4VX9PpIgrNeKB6eRI99W8NxH/89qJDs+8lEZxokmEZ4vChEEt4CQR2KWSYM1GhiAsqbkV4j6SCGuTW8GE4M6/vEgax2XXKbs3J6XqeRZHHhTBATgCLjgFVXAJaqAOMHgEz+AVvFlP1ov1bn3MWnNWNrMP/sD6/AGqYJd6</latexit>

!j
<latexit sha1_base64="FecilDnprMA/Zu9SSDl1Yy/CcvQ=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJmdmadmRVCyE948aCIV3/Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWaYZ0poXQrogYFl1i33ApspRppEglsRsObqd98Qm24kvd2lGKY0L7kMWfUOqnVUQn2afehWyr7FX8GskyCnJQhR61b+ur0FMsSlJYJakw78FMbjqm2nAmcFDuZwZSyIe1j21FJEzTheHbvhJw6pUdipV1JS2bq74kxTYwZJZHrTKgdmEVvKv7ntTMbX4VjLtPMomTzRXEmiFVk+jzpcY3MipEjlGnubiVsQDVl1kVUdCEEiy8vk8Z5JfArwd1FuXqdx1GAYziBMwjgEqpwCzWoAwMBz/AKb96j9+K9ex/z1hUvnzmCP/A+fwAP+o/4</latexit><latexit sha1_base64="FecilDnprMA/Zu9SSDl1Yy/CcvQ=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJmdmadmRVCyE948aCIV3/Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWaYZ0poXQrogYFl1i33ApspRppEglsRsObqd98Qm24kvd2lGKY0L7kMWfUOqnVUQn2afehWyr7FX8GskyCnJQhR61b+ur0FMsSlJYJakw78FMbjqm2nAmcFDuZwZSyIe1j21FJEzTheHbvhJw6pUdipV1JS2bq74kxTYwZJZHrTKgdmEVvKv7ntTMbX4VjLtPMomTzRXEmiFVk+jzpcY3MipEjlGnubiVsQDVl1kVUdCEEiy8vk8Z5JfArwd1FuXqdx1GAYziBMwjgEqpwCzWoAwMBz/AKb96j9+K9ex/z1hUvnzmCP/A+fwAP+o/4</latexit><latexit sha1_base64="FecilDnprMA/Zu9SSDl1Yy/CcvQ=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJmdmadmRVCyE948aCIV3/Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWaYZ0poXQrogYFl1i33ApspRppEglsRsObqd98Qm24kvd2lGKY0L7kMWfUOqnVUQn2afehWyr7FX8GskyCnJQhR61b+ur0FMsSlJYJakw78FMbjqm2nAmcFDuZwZSyIe1j21FJEzTheHbvhJw6pUdipV1JS2bq74kxTYwZJZHrTKgdmEVvKv7ntTMbX4VjLtPMomTzRXEmiFVk+jzpcY3MipEjlGnubiVsQDVl1kVUdCEEiy8vk8Z5JfArwd1FuXqdx1GAYziBMwjgEqpwCzWoAwMBz/AKb96j9+K9ex/z1hUvnzmCP/A+fwAP+o/4</latexit><latexit sha1_base64="FecilDnprMA/Zu9SSDl1Yy/CcvQ=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJmdmadmRVCyE948aCIV3/Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWaYZ0poXQrogYFl1i33ApspRppEglsRsObqd98Qm24kvd2lGKY0L7kMWfUOqnVUQn2afehWyr7FX8GskyCnJQhR61b+ur0FMsSlJYJakw78FMbjqm2nAmcFDuZwZSyIe1j21FJEzTheHbvhJw6pUdipV1JS2bq74kxTYwZJZHrTKgdmEVvKv7ntTMbX4VjLtPMomTzRXEmiFVk+jzpcY3MipEjlGnubiVsQDVl1kVUdCEEiy8vk8Z5JfArwd1FuXqdx1GAYziBMwjgEqpwCzWoAwMBz/AKb96j9+K9ex/z1hUvnzmCP/A+fwAP+o/4</latexit><latexit sha1_base64="FecilDnprMA/Zu9SSDl1Yy/CcvQ=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJmdmadmRVCyE948aCIV3/Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWaYZ0poXQrogYFl1i33ApspRppEglsRsObqd98Qm24kvd2lGKY0L7kMWfUOqnVUQn2afehWyr7FX8GskyCnJQhR61b+ur0FMsSlJYJakw78FMbjqm2nAmcFDuZwZSyIe1j21FJEzTheHbvhJw6pUdipV1JS2bq74kxTYwZJZHrTKgdmEVvKv7ntTMbX4VjLtPMomTzRXEmiFVk+jzpcY3MipEjlGnubiVsQDVl1kVUdCEEiy8vk8Z5JfArwd1FuXqdx1GAYziBMwjgEqpwCzWoAwMBz/AKb96j9+K9ex/z1hUvnzmCP/A+fwAP+o/4</latexit>

' yk
<latexit sha1_base64="z53cuO5DCaW8XckTOghIDzoMkgI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xCzhfkSHSoSCUbTSQ9Yf98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/QnVKJjk01IvNTyhbEyHvGupohE3/mR+6pScWWVAwljbUkjm6u+JCY2MyaLAdkYUR2bZm4n/ed0Uw2t/IlSSIldssShMJcGYzP4mA6E5Q5lZQpkW9lbCRlRThjadkg3BW355lbRqVe+iWru/rNRv8jiKcAKncA4eXEEd7qABTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNmbI3f</latexit>

Neuron Model

N  FSR
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<latexit sha1_base64="YbtbGFh3NEYtfFTSGIOISsVTWpA="></latexit><latexit sha1_base64="YbtbGFh3NEYtfFTSGIOISsVTWpA="></latexit><latexit sha1_base64="YbtbGFh3NEYtfFTSGIOISsVTWpA="></latexit><latexit sha1_base64="YbtbGFh3NEYtfFTSGIOISsVTWpA="></latexit><latexit sha1_base64="YbtbGFh3NEYtfFTSGIOISsVTWpA="></latexit>

120 wavelengths
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Recurrent Neural Networks
Logical topology:

Photonic implementation:

Direction of light 
travel

Optical Waveguide Broadcast Loop

IN OUT
Couple neuron 

output back 
into ring

Photonic neuron nodes 

• ~3dB loss per loop.
• About 120 wavelengths possible
• Can re-use wavelengths in other rings.
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8 Neurons8x8 MRR Weight Banks

Grating 
Couplers

DC
 P

or
ts

metal

DC Ports

8⨉8 Silicon Photonic Recurrent Neural Network

• Memory functionality

• Area: 64 MRRs weights: 
64×25μm×25μm = 0.04mm2

• 8 modulator neurons:  
8×30μm×30μm = 0.01mm2

• Static power: 64 x 5.2mW = 333mW

• Switching efficiency: 500 fJ/MAC

• Program with neural compiler 
(TensorFlow or Nengo)

Work in progress
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Feed-Forward Networks
Logical topology:

IN

THRU:
TO OTHER 
NEURONS

OUT

Photonic implementation:

IN

OUTTHRU

Direction of 
light travel

Ferreira de Lima, Shastri, Prucnal et al. Nanophotonics 6 (2017)

Couple 
neuron to 
adjacent 

ring
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3⨉5⨉3⨉1 Silicon Photonic Feedforward Networks

DC Ports

Weight Banks

metal

Neurons
Grating 

Couplers

DC Ports

DC
 P

or
ts

• Low-latency processing

• Spectral reuse between layers

• 3-layer network; 9 neurons and 
33 weights

5

3

1

Work in progress

Weight BanksNeurons

5

3
1
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Outline
q Motivation

– Artificial intelligence; neural networks;
– Recent work on photonic information processing

q Silicon Photonic Neural Networks
– Microring weight banks: vector multiplications
– Microring modulator nonlinearity

q Applications
– Winner Take All Demonstration
– Nonlinear Programming
– Processing GHz RF Signals

q Conclusion
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2x2 Photonic Winner-Takes-All Demonstration

⇥
W win

⇤
=


WF �1 0
1 WF 0

�

Online 2
WF

1
WF

+1

–1

-20
-10

0
10
20 WF = 0.449

s1
s2

N
eu

ro
n 

st
at

e 
[s

1, s
2] (

m
V)

-20
-10

0
10
20 WF = 0.529

Time (ms)
-0.5 0 0.5

-20
-10

0
10
20 WF = 0.629

St
at

e 
1 

: s
1
(n

or
m

al
ize

d)

N
eu

ro
n 

st
at

e 
 [s

1
, s

2] 
(m

V)

Self Weight: WF

0.5 0.55 0.6 0.65

Fr
eq

ue
nc

y 
(re

la
tiv

e)

0.8

0.85

0.9

0.95

1

1.05

1.1

Transition
Regime

! =
⌧�1

WF

q Neurons compete for activation
q Strong self-feedback transitions from stable to 

oscillating (complex eignenvalues)
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Photonic NN for Nonlinear Programming 

Ferreira de Lima, Shastri, Prucnal et al. J. Lightwav. Technol. 37 (2019)
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Constrained model predictive control problem: Intercept a moving target with 
matching speed while respecting constraints on acceleration and position.

Simulation
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ADC
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Principal Component Analysis of GHz RF Signals

• ADC bottleneck
• Weighted addition (MAC) in DSP
• Processing (dimension reduction) 

after DSP

• Analog wideband weighted
• Enables dimensionality reduction 

in wideband analog systems 
before digitizing

• No MACs, no DSP, only one ADC

Tait, Shastri, Prucnal et al. arXiv:1903.03474 (2019)
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Conclusion

q Neuromorphic photonics enabled by the maturing of three fields
– Silicon photonics, RF analog photonics and scalable computing 
– It is compatible with commercial integration technology

q Wavelength-based networking provides massive interconnection
– Overcomes the bandwidth limits of electronic fan-in & interconnection

q Carrier & photon dynamics allow very fast processing (ps v. ms)
q Applications include:

– Winner takes all networks, nonlinear programming, analog processing of RF 
signals
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Challenges in Making This a Reality

q Co-integration with CMOS
q Integration of laser sources
q Advances in packaging solutions
q New materials (memory) and device integration 
q Development of a neural compiler and 

programming platform to interface the photonic 
hardware with applications. 

q Target the right application: when does it make 
sense to use photonics over electronics?
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