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Project: Fun-COMP Project No: H2020 #780848 Deliverable Report

Second cross-disciplinary training session and associated training
webinars/videos

The Fun-COMP project brings together partners with expertise spanning a wide
range of scientific and technical disciplines. To help ensure that such expertise is
shared between partners, and to help to increase public awareness in the
science and technology underpinning Fun-COMP, two cross-disciplinary training
workshops will be held during the course of the project.

The first such training event was held at the University of Oxford on March 18t
2019 (note that this was formally delayed from month-9 - as in original DoW -
to month-12 to make coincident with project progress meeting) and has been
reported in Deliverable D5.7

The second training event was also held at the University of Oxford, on August
220d 2019, and focused on integrated photonics systems. This event, which we
entitled “Conversations on the Future of Integrated Photonics and Computing”,
consisted of two main sessions, as follows:

1) An invited tutorial presentation by Prof Paul Prucnal, MIT, on Advances in
Neuromorphic Silicon Photonics

2) A panel session on The Future of Photonic Computing, in which Prof Prucnal,
Fun-COMP WP leaders and the audience discussed key technical challenges
facing the development of photonic computing technology.

The training session was attended by a wide-ranging audience including young
PhD and post-doc scientists from partner laboratories, as well as editors of
academic journals, representatives of EPSEC (UK funding council) and local
(Oxford) PhD and post-doc researchers.

A copy of the presentation made by Prof Prucnal is attached to this deliverable
report and currently available on the partner-only pages of the Fun-COMP
website (www. fun-comp.org), but will be migrated to the private pages as soon
as possible confidentiality issues have been addressed. See

https://fun-comp.org/research-contents/project-deliverables/
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ADVANCES IN
NEUROMORPHIC SILICON PHOTONICS

Paul R. Prucnal & Bhavin J. Shastri
Princeton & Queen’s Universities
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a Motivation
- Artificial intelligence; neural networks

- Recent work on photonic information processing

a Silicon Photonic Neural Networks
- Micro-ring weight banks: vector multiplications

- Micro-ring modulator nonlinearity

Q Applications

- Winner Take All Demonstration
— Nonlinear Programming
- Processing GHz RF Signals

A Conclusion
— Challenges in Making This a Reality
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@ UNIVERSITY Rise of Artificial Intelligence
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LeCun, Bengio, Hinton Nature 521 (2015)
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UNIVERSITY Types and Functions of Neural Networks
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Computational Speed Limitations
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Time Scales of Applications & Technologies

kHz
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Speech recognition Object recognition
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Time Scale

Real-time (deep) surveillance

Prucnal, Shastri et al. Adv. Opt. Photonics 8 (2016)
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UNIVERSITY  Time Scales of Applications & Technologies

Tradeoff: challenge being fast and complex

Physical Limitations
kHz- . |nterconnection density: capacitive
MHz loading, EMI, topological constraints
* Bandwidth: «< 1/N? (N=wires)
* Energy efficiency: limited by electron
tunneling (leakage) through gates

Time Scale

Prucnal, Shastri et al. Adv. Opt. Photonics 8 (2016) 7
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Time Scale

Time Scales of Applications & Technologies

Tradeoff: challenge being fast and complex

Hz-
kHz
Physical Limitations
kHz- . |nterconnection density: capacitive
MHz loading, EMI, topological constraints
« Bandwidth: o« 1/N? (N=wires)
* Energy efficiency: limited by electron
tunneling (leakage) through gates
GHz

N A A A 2

Deep Learning
Acceleration

Nonlinear Optimization

Prucnal, Shastri et al. Adv. Opt. Photonics 8 (2016)
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Machine Learning
with Computers

(Al software)

Neuromorphic
Electronics
(special purpose
hardware)

Neuromorphic
Photonics
(hardware)

Enables new applications that
can’t be achieved with
electronics, such as in RF8



Optics & Computing--Why now?

Robert Keyes’ main criticisms of digital optical computing in the 1980’s: A 2019 perspective

Then: Problems Now: Silicon Photonic Solutions
Fan-out — WDM, Analog

J \

Physical cascadability

Logic level restoration
Input-output isolation — O/E/O signal pathway

Large-signal gain

J\

Large system integration

Cost relative to
microelectronics

Footprint

— Silicon photonic integration

Fabrication precision
Stability/sensitivity — In-package CMOS control

Individual adjustment

—

R. W. Keyes, Optical Logic: In the light of computer technology Optica Acta, 32 (5), 1985 (IBM)
R. W. Keyes, What makes a good computer device? Science, 230, pp.138—144, 1985



Optics & Computing--Why now?

Integrated RF photonics
Challenge: programmability
L Zhuang et al. (2015)

Microwave
signal
processing

Silicon photonics,
electronics+photonics

AAAAAAAAAAA

Neuromorphic Electronics
Challenge bandW|dth

10 mm

Free-space Linear NNs
Challenge: integration, nonlinearity

1 million neurons

256 million synapses X 4
% O @ﬁ@] ﬂ O 5.4 billion transistors | z 1

J. Goodman et al. (1978) P. Merolla et al. (2014)

Deep learning, spiking, machine learning

Prucnal & Shastri, Neuromorphic Photonics CRC Press (2017) 10



1) Photonic Reservoir Computing: — X

nature

COMMUNICATIONS
nature \_— Experimental demonstration of reservoir computing
COMMUNICATIONS ope . .

o _ , on a silicon photonics chip
Pa ral Iel phOton IC lnformatlon proceSSI ng Kristof Vandoorneu, Pauline Mechetu, Thomas Van Vaerenberghm, Martin Fiersm, Geert Morthier1'2, Ghent
at g|ga byte per Second data rates usi ng David Verstraeten3, Benjamin Schrauwen?, Joni Dambre? & Peter Bienstman'2
transient states .. . .
e N Photonic information processing beyond

Daniel Brunner!, Miguel C. Soriano, Claudio R. Mirasso' & Ingo Fischer! CO]iVllVlIULNICATIONS

| Turing: an optoelectronic
Information processing using a single dynamical

. implementation of reservoir computin
UIB, Spain node as complex system p p &

L. Appeltant’, M.C. Soriano?, G. Van der Sande', J. Danckaert’, S. Massar?, J. Dambre?, B. Schrauwen®,

CR. Mirasso? &I Fischer? L. Larger,’ M. C. Soriano,” D. Brunner,>* L. Appeltant,’ J. M.

Gutierrez,* L. Pesquera, C. R. Mirasso,? and 1. Fischer?

FEMTO-ST, France

2) Multiwavelength Neural Networks:

SCIENTIFIC REPQRTS

------- Neuromorphic photonics with
Neuromorphlc photonic networks electro-absorption modulators

USIng S|I|C0n phOtonIC We'ght banks JONATHAN K. GEORGE,! ARMIN MEHRABIAN,! RUBAB AMIN,’

JIAWEI MENG,1 THOMAS FERREIRA DE LIMA,2 ALEXANDER N.
Alexander N. Tait®, Thomas Ferreira de Lima, Ellen Zhou, Allie X. Wy, Mitchell A. Nahmias, TAIT,2 BHAVIN J. SHASTRI,2 TAREK EL-GHAZAWI,1 PauL R.

Bhavin J. Shastri(® & Paul R. Prucnal . 5 L
Princeton PRUCNAL,“ AND VOLKER J. SORGER

Optics EXPRESS

Princeton & GWU

3) Coherent Optical Neural Networks:

Research Article Vol. 5, No. 7 / July 2018 / Optica 864
*

mitl”"c . ARTICLES
p Otomcs PUBLISHED ONLINE: 12 JUNE 2017 | DOI: 10.1038/NPHOTON.2017.93

Deep learning with coherent nanophotonic circuits 1 4ining of photonic neural networks through

Yichen Shen™, Nicholas C. Harris™, Scott Skirlo', Mihika Prabhu', Tom Baehr-Jones?, in situ backpropagation and gradient measurement
Michael Hochberg?, Xin Sun?, Shijie Zhao*, Hugo Larochelle’, Dirk Englund' and Marin Soljacic'

(Relinquished their claims at IEEE Summer Topical) MIT

TyLer W. HuaHes," MomcHIL Minkov,2 Yu SHI,2 AND SHANHUI FAN?*

Stanford 11



4) Photonic Spiking Neural Networks:

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 19, NO. 5, SEPTEMBER/OCTOBER 2013 S C | E N _|_ | F | C R E P : R T S

A Leaky Integrate-and-Fire Laser Neuron

for Ultrafast Cognitive Computing Spike processing with a graphene
Mitchell A. Nahmias, Student Member, IEEE, Bhavin J. Shastri, Member, IEEE, .
Alexander N. Tait, Student Member, IEEE, and Paul R. Prucnal, Fellow, IEEE -excita ble laser
Princeton Bhavin J. Shastri*, Mitchell A. Nahmias®, Alexander N. Tait", Alejandro W. Rodriguez, Ben Wu
—— | &PaulR.Prucnal

PRL 112, 183902 (2014) PHYSICAL REVIEW LETTERS S C | E N —I—| |: | C R E P{}QRTS

Relative Refractory Period in an Excitable Semiconductor Laser Regene rative memory in t| me-
F. Selmi, R. Braive, G. Beaudoin, 1. Sagnes, R. Kuszelewicz, and S. Barbay’ de I ayed neuv romorph iC phOtOI‘l iC

Laboratoire de Photonique et de Nanostructures, LPN-CNRS UPR20, Route de Nozay, 91460 Marcoussis,

LPN-CNRS, France resonators

B. Romeira’”, R. Avé?, José M. L. Figueiredo?, S. Barland? & J. Javaloyes?
I 1 g 1 y

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 24, NO. 6, NOVEMBER/DECEMBER 2018 UIB Spaln & UnlverSIté de NICG
’

Neuromorphic Photonic Integrated Circuits

Hsuan-Tung Peng *“, Mitchell A. Nahmias, Thomas Ferreira de Lima *“, Alexander N. Tait "~
Bhavin J. Shastri Y, Member, IEEE, and Paul R. Prucnal, Fellow, IEEE Princeton

(Invited Paper)

APPLIED PHYSICS LETTERS 100, 103703 (2012) nature SUPPLEMENTARY INFORMATION

https://doi.org/10.1038/541586-019-1157-8

Investigation of vertical cavity surface emitting laser dynamics for

neuromorphic phOtOI"IiC systems In the format provided by the authors and unedited.

A. Hurtado,? K. Schires, I. D. Henning, and M. J. Adams

B iy vt e e e o e o oo ] - optical spiking neurosynaptic
Strathclyde & Essex  petworks with self-learning capabilities

J. Feldmann', N. Youngblood?, C. D. Wright?, H. Bhaskaran? & W. H. P. Pernice'*
Exeter, Oxford, Munster




5) Diffractive Optics:
Science

UCLA Reinforcement learning in a large-scale
I photonic recurrent neural network
All-optical machine learning using diffractive deep neural networks J. Bueno,' S. MakToosl,? L. FRoeHLy,? I. FiscHer,' M. Jacauot,? ® L. LARGER,? AND D. BRUNNER®*

H H H i i H H H i H TInstituto de Fisica Interdisciplinar y Sistemas Complejos, IFISC (UIB-CSIC), Campus Universitat de les llles Baleares, E-07122 Palma de Mallorca, Spain
Xmg Lin, Yair Rivenson, Nezih T. Yardimci, Muhammed Veli, Yi Luo, Mona Jarrahi andAydLnozcan 2FEMTO-ST Institute/Optics Department, CNRS & University Bourgogne Franche-Comté, 15B avenue des Montboucons,

FEMTO-ST, France

6) Ising Machines:

naqre LETTERS

L]
phOtOmCS PUBLISHED ONLINE: 26 OCTOBER 2014 | DOI: 10.1038/NPHOTON.2014.249 ‘ 1‘ I l‘ ‘

Network of time-multiplexed optical parametric A fully programmable 100-spin coherent Ising machine with all-to-all connections

. . . Peter L. McMahon, Alireza Marandi, Yoshitaka Haribara, Ryan Hamerly, Carsten Langrock, Shuhei Tamate, Takahiro Inagaki,
oscﬂlators as a coherent Is|ng machlne Hiroki Takesue, Shoko Utsunomiya, Kazuyuki Aihara, Robert L. Byer, M. M. Fejer, Hideo Mabuchi and Yoshihisa Yamamoto

Alireza Marandi'?*, Zhe Wang', Kenta Takata?3, Robert L. Byer' and Yoshihisa Yamamoto'?3

Stanford & NTT

7) Other Computing and Superconducting approaches:

[ ]
SClel lce PHYSICAL REVIEW APPLIED 7, 034013 (2017)

UPenn £

Superconducting Optoelectronic Circuits for Neuromorphic Computing

Inverse-designed metastructures that solve equations

Jeffrey M. Shainline,* Sonia M. Buckley, Richard P. Mirin, and Sae Woo Nam
Nasim Mohammadi Estakhri, Brian Edwards and Nader Engheta

National Institute of Standards and Technology, 325 Broadway, Boulder 80305, Colorado, USA

NIST
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1) Photonic Reservoir Computing

Jaeger, Haas Science 304 (2004) Larger et al. Opt. Express 20 (2012)
Maass, et al, Network: Comput. 14 (2002) Appeltant et al, Nat. Commun. 2 (2011)
Input layer Reservoir Output layer Classes Input layer Reservoir Output layer Classes
1
i - -\ il -
w3
- e R oA A AR W Y GHN AR —— >.— -
= "4 \ 3
: . Mask . .
ad i , Trained weights . Trained weights .
Random, fixed input weights . Time multiplexing Virtual nodes ¢
Random, fixed connections
» Weights are time multiplexed
Appeltant et al, Nat. Commun. 2 (2011) . ¥ . P
« Single nonlinear laser node (NL)
« Reservoir (random recurrent connections) increases * Fiber loop creates recurrent network
number of dimensions + More nodes increases latency (with same NL)
» Output layer trained to do linear classification b 6
YA . zp E Brunner et al, Nat. Commun. 4 (2012)

. » £
N see S ]
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> > 6 7 8 9 10 11 12
Not linearly separable Linearly separable x

Laser diode current (mA)

Increasing dimensions facilitates classification . Spoken digit (0, 1,...9) classification, 5 GHz bandwidth

» Lowest error near laser threshold current (highest
nonlinearity) 14



2) Coherent Optical Neural Network

Y= W Q)

h® = f(z0)

Input layer Output layer

Hidden layers

Optlcal input Optical ¢
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Photonic integrated circuit
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Optical interference unit
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Shen, Harris, Englund, Soljacic et al, Nat.
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Photon. 11 (2017)

This is a vector-matrix multiplier
corresponding to a neuron front-end.
Any matrix M can be represented by
standard singular value decomposition:
M = UxVT with U, VT unitary matrices.
Implement U and VT with MZI, which has
unitary Jones matrix (below)
Diagonal weights X implemented with
MZM.

Phase shifter

50% coupler \‘ : :
' O D

Waveguide

(¢

Loss balancing

et? cos(9/2))
_ sin(0/2)

9 sin(6/2)
cos(0/2)

+ Optical nonlinearity was not implemented.
Simulated nonlinearity
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3) Photonic Spiking Neurons
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Nahmias, Shastri, Prucnal et al. [IEEE JSTQE 19 (2013)  Selmi, Barbay et al. Phy. Rev. Lett. 112 (2014)

Semiconductor Ring & Microdisk Lasers
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L. Gelens et al. Phy. Rev. A. 82 (2010)
Van Vaerenbergh et al. Opt. Express 21 (2013)

Some of these devices require optical injection, and are therefore not compatible with optical fan-
in, an optical matched filter front-end, or WDM interconnects.

Prucnal, Shastri et al. Adv. Opt. Photonics 8 (2016) 16
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3) Photonic Spiking Neural Networks
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a Motivation
- Artificial intelligence; neural networks

- Recent work on photonic information processing
a Silicon Photonic Neural Networks

- Microring weight banks: vector multiplications

- Microring modulator nonlinearity

Q Applications

- Winner Take All Demonstration
— Nonlinear Programming
- Processing GHz RF Signals

3 Conclusion
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@ university Neuron Model and Photonic Implementation 6o

NIVERSITY

O Neuron operation: 1) receive multiple inputs; 2) weight each by coefficient; 3)
sum them; 4) perform a nonlinear process

0 1-3is a weighted sum or multiply & accumulate (MAC)

0 State variable s is thresholded by a nonlinearity ¢ (decision)

Output
— - 2
X W
: T T T T Attt *

Optical Inputs \Microring Weight Bank | TV Ak ~ >
x1(41) | (weighting) ! THRU PUMP P!
o) QOE - @ >—(®

: ' DROP v Optical Output
xn(Ay) I R T " =GND
electrical _optical Electronic Control Balanced PD Modulator
(summing) I (nonlinearity)

ye(t) = olsi ()
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Weight 1

Red = mean error; Blue = std. dev.

Control precision: 7 bits + Sign bit

Tait, Shastri, Prucnal et al. Opt. Express 24 (2016)
Ma, Shastri, Prucnal et al. Opt. Express 27 (2019)
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Balanced PD Output

Photogenerated carriers change R;
sense R to monitor light in ring. 20
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Silicon Microring Modulator Nonlinearity
V-V GNDY .

um
N type pump

| Optical
Ptype 1\

Electrical 4
input— > |

| Through port

Sigmoid RelLU Quadratic

T T T i / :y:

Recurrent Feedforward Support vector
Hopfield networks (CNNs) machines (SVMs)

Modulator X-section

500nm
)
sonm 750nm I130nm
! n p 0

Plasma dispersion effect
modulates index.
Free carriers can absorb light,
leading to loss.

Bias current shifts the resonance and loss. Allows engineering the activation function

Tait, Shastri, Prucnal et al. Phys. Rev. Appl. 11 (2019) 21



Tuning the Activation Function

V+ | }\n
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Tait, Shastri, Prucnal et al. Phys. Rev. Appl. 11 (2019) 22



Features:

Multiwavelength Silicon Photonic Neuron

PD=+Modulator

0o Compatible with mainstream foundries
o MRR weight banks for WDM weighting
- parallel processing & speed of light
o PD+/PD- do summing; provides +ve/-ve weights
0 MRR & balanced PD does vector multiplication
0 Modulator for fast electro-optic nonlinearity
Metrics:
o Energy efficiency (today): 500fJ/MAC @ " o W PRINCETON
o Efficiency (foreseeable tech.): 1.1 fJ/MAC oo @y UNIVERSITY
0 Speed: 10-40 GHz operation M'CROSY”EMS



?Eﬁ%ﬁ%&% Neural Network: Broadcast-and-Weight 6"
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Wavelength division multiplexing provides all-to-all interconnects

Photonic Neuron Neuron Model

______________________________________________

____________________________________

Sum Nonlinearity

Broadcast Loop
Waveguide

____________________________________

O Broadcast: no switching
or routing is required

Q N2-connections with
single waveguide (not N
wires)

Q Bandwidth not limited by

number of interconnects
Prucnal and Shastri CRC Press 2017 (i.e fan-in)
Tait et al. J. Lightw. Technol. 32 (2014)
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NIVERSITY

Logical topology:

| || i M
MM o
Direction of light

travel

AR
A —_—
/ ouT
Couple neuron
output back
into ring

—
IN

« ~3dB loss per loop.
* About 120 wavelengths possible
« Can re-use wavelengths in other rings. 25
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# UNIVERSITY 8x8 Silicon Photonic Recurrent Neural Network

e
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?gSMRRW ht B 8N ] ]
@ X e|g t Banks eur

iy AEEEN
'lllll Memory functionality

I EEEET |
 EEEEE Area: 64 MRRs weights:

AR E 64x25umx25um = 0.04mm?
* 1111

.llll‘f@ 8 modulator neurons:
HEEEN 8x30pmx30pm = 0.01mm?

1 111
Static power: 64 x 5.2mW = 333mW
Grati
Corspllr;?s, Switching efficiency: 500 fJ/MAC

(I | (|
% i

Program with neural compiler
(TensorFlow or Nengo)

o Bl PRINCETON
oooe @AY UNIVERSITY 26

Work in progress 7CMC

MICROSYSTEMS
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NIVERSITY

Logical topology:

P &
O

\4

ST ;' 3

SN

\4

N l% Photonic implementation:
= N m\ 4
= OuT/ .
Couple = [l :
neuron to ==
adjacent
l ng = | Direction of
THRU: l: l light travel
TOOTHER ||— ouT
NEURONS V= |

Ferreira de Lima, Shastri, Prucnal et al. Nanophotonics 6 (2017) 27
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nwrof TS T
n o :

1ro
g |
Pa by

é""j} .
M=,

« Low-latency processing

« Spectral reuse between layers

« 3-layer network; 9 neurons and
33 weights

e M PRINCETON

MMMMM

°°°°°°° N UNIVERSITY

Work in progress 28
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3 Motivation
- Artificial intelligence; neural networks;

- Recent work on photonic information processing
a Silicon Photonic Neural Networks

- Microring weight banks: vector multiplications

- Microring modulator nonlinearity

Q Applications

- Winner Take All Demonstration
- Nonlinear Programming
- Processing GHz RF Signals

3 Conclusion

29
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UNIVERSITY — 2x2 Photonic Winner-Takes-All Demonstration n's
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Constrained model predictive control problem: Intercept a moving target with
matching speed while respecting constraints on acceleration and position.
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Principal Component Analysis of GHz RF Signals

ADC H
W Digital Multivariate
ADC H Signal [—> Photonic
\4 Processor Y | Processor ADC =
ADC IH
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! ! ! weight bank detector
| W1 : ! |
\ S, | ! MRR :
! AKX ! ! modulators !
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: : ' sources i
* ADC bottleneck * Analog wideband weighted

« Weighted addition (MAC) in DSP « Enables dimensionality reduction

 Processing (dimension reduction) in Wideb?r_‘c_’ gnalog systems
after DSP before digitizing

« No MACs, no DSP, only one ADC
Tait, Shastri, Prucnal et al. arXiv:1903.03474 (2019)
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0 Neuromorphic photonics enabled by the maturing of three fields

— Silicon photonics, RF analog photonics and scalable computing

— It is compatible with commercial integration technology

a Wavelength-based networking provides massive interconnection

— Overcomes the bandwidth limits of electronic fan-in & interconnection

o Carrier & photon dynamics allow very fast processing (ps v. ms)
a Applications include:

— Winner takes all networks, nonlinear programming, analog processing of RF
signals




Challenges in Making This a Reality

0 Co-integration with CMOS

0 Integration of laser sources

a Advances in packaging solutions

2 New materials (memory) and device integration

2 Development of a neural compiler and
programming platform to interface the photonic
hardware with applications.

a Target the right application: when does it make
sense to use photonics over electronics?



Acknowledgements

Lightwave Prucnal Lab (Princeton)
Prof. Paul Prucnal
Postdoc: Chaoran Huang
Students: Mitchell A. Nahmias
Philip Ma
Thomas Ferreira de Lima
Hsuan-Tung Peng
Aashu Jha
Simone Bilodeau

Shastri Lab (Queen’s)
Prof. Bhavin J. Shastri
Postdoc: Bicky Marquez

Students: Matthew Filipovich
Zhimu Guo
Viraj Bangari (undergrad)
Hugh Grant

Collaborators and Fabrication Support
Alexander N. Tait, NIST
Matt Chang, Luminour Computing
Volker Sorger, Tarek ElI-Ghazawi, GWU
Lukas Chrostowski, Sudip Shekhar, UBC
CMC Microsystems, Canada
Advanced Micro Foundry (AMF), Singapore
NSERC-CREATE Si-EPIC
Applied Nanotools (ANT), Canada

35



« Taylor & Francis (CRC Press)
+ 412 Pages
« [SBN 9781498725224

* (Contributions:
Tait, Ferreira de Lima, Nahmias

-

omorphic

Neuromol
Photonics

Paul R. Prucnal
Bhavin J. Shastri

36



shastri@ieee.org

prucnal@princeton.edu



