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Summary 

The world is generating exponentially increasing amounts of digital information- each day 2.5 
quintillion bytes of data are created, captured, and consumed, and this number is only projected to 
grow with the proliferating internet-of-things, and the emerging artificial intelligence. The data needs 
to be processed fast and efficiently, and has necessitated new thinking about how our computers must 
fundamentally work. In FunCOMP, we are working towards overcoming the fundamental limitations of 
our conventional sequential electrical computing by designing a parallelized photonic in-memory 
computing (or memcomputing) architecture using phase-change memory arrays and coherent on-chip 
frequency combs. We harness the distinct property of light: wavelength division multiplexing, to 
execute matrix-vector multiplication operations in parallel and experimentally demonstrate a photonic 
tensor core capable of operating at Tera-Multiply-Accumulate (TMAC)/s speeds. In this report, we 
discuss our photonic memcomputing architecture, and we showcase a demonstrator example of a highly 
energy-efficient and fast convolutional processing engine for image detections in demanding AI 

applications.  
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1. Introduction and background 

In the early 1900s, Alan Turing conceptualized with adequate mathematical proof a hypothetical 

system he called the universal computing machine. What he was alluding to at that time is the present-

day computer: a machine by definition capable of storing, communicating, and computing data. In 

their earliest implementations, computers executed fixed algorithms, performing simple calculations, 

and lacked the ability to be restructured for dynamically changing and diverse tasks. As the demand 

for computation and reprogramming grew, came the concept of a von Neumann architecture, proposed 

by John von Neumann, a decade after Turing’s proposal. The architecture physically separates the 

computational, or the central processing unit (CPU), from the memory unit, so enabling re-

programmable logical and computational operations.  The very requirement to shuttle data back and 

forth between the CPU and memory incurs tremendous costs on energy, and latency (delays), which in 

the recent past have turned into troublesome computing bottlenecks. The ‘memory wall’ bottleneck, for 

example, is a result of the finite bandwidth at which data can be moved across the interconnects and 

be accessed at the memory. This means even with the fastest imaginable processors, the computation 

throughput would decisively be governed by the data transfer speeds, resulting in the processor 

spending a lot of time being idle. This disparity between the data demand and supply at the CPU, 

defined by bits per second, is only widening as processors are getting faster, and while many computer 

performance metrics have exponentially improved in the 40 years of the semiconductor technology, 

the latency that defines the time it takes to access and compute data from the memory has improved 

far less dramatically. Similarly, the energy expenditure on accessing and shuttling data has become 

strikingly large compared to energy spent on the computation itself.  

Motivated to overcome these growing limitations, in the Fun-COMP project, we have set out to 

create novel computer architectures that can radically redefine computing from being compute 

(processor) centric (the von-Neumann architecture) to data (memory) centric. Our approach also  

substitutes electricity with light, such that information gets represented, transferred, and computed as 

optical signals, in a framework that we refer to as photonics memcomputing. Such a scheme provides 

extremely low latencies and a very large computational throughput, the latter a result of the ability 

to use wavelength division multiplexing (WDM) to carry out parallel computations. Our research 

importantly leverages the recent advances in integrated photonics, including hybrid integration of 

soliton microcombs at microwave line rates, ultra low-loss silicon nitride waveguides, and high-speed 

on-chip detectors and modulators. To that end, we have demonstrated a highly parallelized, fast, and 

scalable integrated photonics accelerator – a form of photonics co-processor (or photonics tensor 

processor core – TPU). Such first-of-its-kind hardware can be considered as the optical analog of an 

application-specific integrated circuit, that is capable of operating at speeds of trillions of multiply-

accumulate (MAC) operations per second (1012 MAC operations per second or tera-MACs per second). 

We will briefly describe this technology in this article.  

Note also that because of the impact and technological significance our Fun-COMP photonic 

memcomputing technology for fast-emerging AI applications, we brought together a round-table of 

leading experts to critically discuss these advances, and to draft a research road-map. What this 

naturally resulted in is a cross-disciplinary engagement to communicate the ideas and discoveries to 

the wider public, and research audience, in the format of a comprehensively detailed book. In this 

book, which is due for publication in late-2021, we take a ground-up approach in elaborating the 

concepts, from device fundamentals to systems design. Details of the book will be posted in the Fun-

COMP website (www.fun-comp.org) post publication 

 

http://www.fun-comp.org/
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2. Discussion 

Photonic Memcomputing:  

Our all-optical information processing benefits from all-optical memory solutions that do not require 

detours through electronic circuitry, thus eliminating energy-inefficient electro-optical conversion 

operations. To that end, we utilize phase-change materials (PCMs) for photonic memory elements. 

PCMs provide strong optical contrast in the refractive index when reversibly switched between the 

amorphous and crystalline phase states, representing the logical states. In the crystalline PCM state, 

most of the incoming light is absorbed, representing for example a “0”. In the amorphous state, most 

of the light is transmitted, thus representing a “1”. Intermediate transmission states can be chosen by 

controllably switching fractions of amorphous and crystalline material in the PCM cell. The switching 

process can be induced with optical laser pulses on a picosecond timescale and thus allows for ultrafast 

operation of PCM-photonic devices. The change in refractive index is a broadband optical property 

of PCMs, and therefore such memory elements can be addressed in a wide wavelength range. In 

particular, this includes the 1500-1600 nm IR range and so makes the integration into the silicon 

photonics platform as a building block feasible and highly attractive. This enables the PCM-based 

photonic memories to be directly operated with other required active elements (lasers, optical 

amplifiers, modulators, detectors) in the form of a scalable photonic integrated circuit (a PIC).  

Such PCM-memories allow for implementing cumulative data storage and thus are highly 

attractive for realizing in-memory computing applications. Particularly attractive about this concept is 

the possibility to transfer computationally expensive operations from the electronic domain to the 

photonics domain, where ultrafast modulation speeds and reduced latency are readily available. This 

concerns especially essential computing operations in artificial neural network implementations and 

which limit the system performance in terms of speed and energy efficiency - such as matrix-vector 

multiplications (MVMs). Additionally, because of the broadband operation window, such PCM memory 

cells can be combined with wavelength division multiplexing (WDM) strategies. This feature allows 

parallel access in the frequency domain as a route for upscaling both computational capacity as well 

as memory access. This way the same memory cell can be read out in parallel at multiple wavelengths, 

and these parallel signals can act as inputs to photonic neuromorphic hardware. This is especially 

attractive for realizing ultrahigh bandwidth MVM systems in a fully integrated format. Such systems 

can be employed for range of applications that fall under the categority of mixed-precision 

computing. One such application is solving systems of linear equations Ax = b. Here an iterative 

refinement algorithm is used, whereby an initial solution is chosen as the starting point, and is iteratively 

updated with a low-precision error-correction term, z. The error-correction term is computed by solving 

Az = r inexactly, using the residual r = b-Ax, calculated with high precision. Another arguably more 

impactful application domain is deep learning inference where the MVM systems are used to 

implement (albeit with reduced precision) the MVM operations associated with each synaptic layer in 

a deep neural network (DNN). The other operations such as nonlinear activations are implemented in 

high precision in a digital processor.  

A particularly attractive DNN for mixed-precision deep learning is convolutional neural networks 

(CNNs) (Nature 589, 52–58 (2021)). CNNs are highly effective for applications such as image 

classification, autonomous navigation, and audio analysis in the frequency domain. In state-of-the-art 

CNNs, many convolutional “hidden layers” are applied to an input signal before feeding the processed 

data to fully connected layers for classification (i.e. for ouput generation). Each of the convolution 

layers takes in an input image, performs convolutional operations (with a filter or ‘kernel’) to extract 

features, and generates an output image. To perform each convolution operation, a filter is passed 

over the input image inspecting a small window of pixels at a time. These filters are relatively small 
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even for state-of-the-art CNNs, and hence an MVM photonic processor based on photonic PCM-cells 

was developed to implement these convolution layers in a CNN. Importantly, through WDM capability, 

we are able to efficiently parallelize several convolution operations within the confines of the same 

Fun-COMP photonic processor, thus achieving significant savings on computational time and space 

complexities (see Figure 1). 

 

 

Figure 1. An Illustration of a convolution neural network, with multiple densely connected convolution layers. 
Each of the convolution layers takes in an input image, performs convolutional operations (which are matrix-
vector or MAC operations) with pre-defined filters to extract features, and generates an output image to fully 
connected layers for classification. The bottom panel is a comparison of digital and analog electronic 
architectures with our photonic tensor core architecture, for purposes of MAC operation. Digital electronics 
(left) require many sequential processing steps distributed across multiple cores to compute convolutional 
operations on an image, whereas an entire MVM can be performed in one step using analog electronic in-
memory computing (center). Photonic in-memory computing (right), using wavelength multiplexing as an 
additional degree of freedom, enables multiple MVM operations in a single time step, alongside the data-
transfers at the speed of light. 

Key Results:  

In our memcomputing based all-optical neural network, the synaptic matrix weights are implemented 

in the PCM-memory cells, based on Ge2Sb2Te5 chalcogenide phase-change material. The memory cells 

are operated in a transmission modulation mode, where the optical output power is regulated in a 

non-volatile manner depending on the PCM structural state (amorphous-crystalline volume fraction), 

where the PCM cells are optically programmed with high precision for differing transmission states. By 

arranging multiple PCM memory cells in an interconnected matrix form, the photonic analog of 

electronic crossbar array, or matrix, is realized on-chip (see Figure 2a). The matrix is designed as a 

waveguide crossbar array with directional couplers that equally distribute the input power to all PCM-

cells.  By using different wavelengths, interference inside the waveguides can be avoided and the 

summation of the individual products (of the matrix-vector multiplications) can be performed by adding 
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the light to the output waveguides, also by using directional couplers. This way the optical power at 

the output comprises the input optical power weighted by the programmed states (levels) of the PCM-

memory cells, thus directly encoding the computationally expensive multiply-accumulate (MAC) 

operation (that lies at the heart of convolution processing) in the optical domain. We verified the 

applicability of such a concept using a suite of simulations and experimental trials, before arriving at 

an optimal design. The photonic circuits were fabricated using a three-step electron-beam lithography 

process on a silicon nitride on silicon oxide on silicon wafer. The complete circuit was designed using 

FDTD method and GDShelpers, a design framework for integrated photonic circuitry. The key chip 

regions are magnified in the optical micrographs shown in Figure 2b. The coupling of light into the 

optical chip is achieved using broadband total internal reflection (TIR) couplers. The TIR couplers 

provide access to a wide wavelength spectrum and thus allow the coupling of multiple wavelengths 

into the chip. The PCM-cells (of area 3×3 µm²) acting as the matrix elements are deposited on top of 

waveguide crossings. Each matrix cell can be optically switched for programming each matrix element 

(in this case the light is coupled to the chip using Bragg-grating couplers because operation at a single 

wavelength (1550 nm) is sufficient).  

In a conventional CNN, to a convolution layer input images of dimension n×n and din channels 

are fed, where the channel may represent the color tones (red, green, and blue). If there are dout 

convolution kernels of size k×k, each convolutional filter is of dimension k×k×din and the resulting 

output image is of dimension (n-k+1)×(n-k+1) with dout channels. To perform each convolution 

operation, a filter is passed over the input image inspecting a small window of pixels at a time. A 

pixel-wise MAC operation between the filter and the current filter window is carried out to calculate 

a single pixel of the output image. This corresponds to (n-k+1)²×k2×din×dout MAC operations per 

convolution layer, leading to a significant computational bottleneck. In order to build efficient 

hardware to perform the convolution operations, one approach is to combine all the convolutional 

filters into a large filter matrix. The filter matrix will be of dimension (k²×din) × dout. It is constructed 

by stacking the kernel matrices into the columns of the final filter matrix. In the same way, the pixels 

of the input image are rearranged by stacking the pixels of the filter volume, (k×k×din), into the rows 

of the input matrix. Hence a single convolution operation involves (n-k+1)² such MVM operations 

between the filter matrix and the input vectors of k²×din dimension. In the electronic domain, these 

MVM operations are typically multiplexed in time with parallelization afforded only by physically 

replicating the filter matrix (i.e. physically replicating the hardware). In this work, we exploit the optical 

WDM to overcome this fundamental limitation by encoding multiple input vectors of dimension k²×din 

onto multiple lines of a coherent frequency comb. These optical input vectors can then be applied to a 

single (k²×din) × dout filter matrix simultaneously, thus eliminating duplicated physical hardware and 

sequential operations.  

To illustrate the convolutions in the optical domain experimentally, we show in Figure 2c 

examples of processing four input vectors in parallel, for edge detection. In this case, four pixels of 

the input image (in the top panel, the Waterloo underground station logo, and in the bottom panel, a 

Zebra) are obtained per image kernel simultaneously, therefore shortening the processing time by a 

factor of four. The kernel size used for this experiment is 2×2 and the input dimension of the image, 

din = 1, leading to a 4×4 filter matrix. The convolutions highlight the different edges (orientations 

(horizontal/vertical)) which can be seen, for example in the representation of the bricks in the Waterloo 

Logo.  We also experimentally performed the task of MNIST (a commonly utilized benchmarking 

database) digit recognition with a CNN, as illustrated in Figure 2d.  The CNN employed in our 

experiments consists of the input layer taking the pixel data (28x28 pixels, single-channel) that is then 

passed to a convolution layer consisting of four 2x2 kernels plus subsequent Rectified Linear Unit (ReLU) 

activation, resulting in an output of dimension 27x27x4 (valid padding). The output from the 
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convolution step is flattened and fed to a fully-connected layer with ten neurons. The probabilities for 

every digit are obtained from the final classification using the softmax function. The network was 

trained via software and the weights of the filter kernels were programmed to the states of the PCM-

cells in the on-chip matrix. The experimental implementation of the CNN reached an accuracy of 

95.3% showing good agreement with the calculated prediction accuracy of 96.1%. To estimate the 

ultimate performance capabilities of the system, we explored the scaling capabilities in terms of matrix 

size, modulation speed, and the number of parallel vectors. 

 

 

Figure 2. (a) Illustration of a FunCOMP photonic architecture to compute convolution operations. A laser 
generates a broadband frequency comb. Individual comb teeth that form the input vectors are modulated at 
high speeds, multiplied with a matrix (crossbar) of non-volatile phase-change memory cells, and summed 
along each column on a photodetector. Every column of the crossbar encodes a convolution filter or kernel. (b) 
Optical micrograph of a fabricated 4×4 matrix with 3D printed input and output couplers to enable 
broadband operation. The close-up SEM images on the right show the 3D printed couplers (bottom) and the 
waveguide crossings with the PCM (top) in more detail. (c) Convolution using parallel MVM operations. The 
original input images are shown on the left and to the right the output images using four different edge 
detection image kernels. The size of the four image kernels is 2×2 corresponding to a 4×4 filter matrix. In 
each time step, four input vectors are processed simultaneously via wavelength division multiplexing. (d) The 
layer structure of a convolutional neural network used to test the photonic tensor core with the MNIST 
database for digit recognition. 

Benchmarking projections show that our Fun-COMP memcomputing hardware has a MAC rate 

that is (i) around ten to twenty times faster than modern electronic CPUs, GPUs, etc. (including ~30 

times faster than Google’s work-horse TPU), (ii) many orders of magnitude faster than electronic 

neuromorphic implementations (e.g. 1000 times faster than HICANN) and (iii) as fast as other photonic 

neuromorphic systems currently in development. Moreover, the energy consumed per MAC using the 

Fun-COMP approach is already ‘best in class’ (e.g. at 0.04 pJ some 500 times less than state-of-art 

GPUs and 5000 times lower than HICANN) and the computational density is (in spite of the relatively 

large size of integrated photonic components) also projected to be better than all other relevant 

technologies. These are some remarkable improvements, given this is only the first instance of our 

demonstration of this exciting new technology. More importantly, such an approach more broadly 
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suggests that integrated photonics are coming of age and in some cases can begin to match and even 

challenge electronic computation. 

 

3. Conclusions and next steps 

The memcomputing technologies developed in the Fun-COMP project have the potential to perform 

data processing with orders of magnitude higher speed than any other state-of-the-art techniques, 

thus achieving (even exceeding) the goals set on the roadmap set for AI hardware. Our demonstrations 

of convolutional processing on a photonics memcomputing engine are an exemplary showcase of such 

technologies, that show promise to remove the computing bottleneck in modern machine learning 

applications. There are, as with any promising technology however, important challenges to discuss 

and tackle. For example, neural network based accelerators commonly have hundreds of millions of 

parameters, thus for photonic technologies to be commensurate, the scaling challenge must be 

overcome (i.e. large-scale PCM-based PICs need to be designed and fabricated). Similarly, R&D 

directions must be laid in solving input-output challenges, which will require efficient on-chip electro-

optical converters, temperature controllers, and power supplies. This will most likely be enabled by 

the co-integration of PICs with CMOS. Newer optical components and materials will be needed too, 

both for more efficient processing, as well as for more specific data-processing units, such as non-linear 

thresholding for fully-connected layers. Among other things, these are some very interesting aspects 

that we aim to explore and discuss in the remainder of the Fun-COMP project. We will also work 

toward conceiving system-level architecture based on Fun-COMP MVM photonic processors to execute 

end-to-end AI workloads. We will more rigorously benchmark the figures-of-merits, and henceforth 

optimize the various variables in achieving the optimal performance in data processing speed, 

bandwidth, and computational energy, first through a suite of simulations and then experimentally. 

We will also thoroughly assess the fabrication costs, scalability, and challenges for system deployment 

of optical memcomputing technologies in an industrial environment. Such an assessment will be done at 

the end of the Fun-COMP project. While we add to our demonstration of an optical convolutional 

neural network-based, we will also research newer concepts, tailored critically for such photonic 

memcomputing processors. An immediate research goal is to project a few important brain-inspired 

algorithms onto our hardware, for the task of sequential learning. We will aim to show how, much like 

the human brain, the photonic hardware could detect patterns and find correlations in live video 

processing, for important applications such as autonomous driving. Whilst engaged in achieving this 

research goal, we will also put together comprehensive reports (via journal and conference 

presenations, as well as Fun-COMP public deliverables) of the fundamentals, advances, and 

opportunities relating to our technology so that more and more research groups and industrial firms 

indulge. We hope that a concomitant slew of interest would result in research advances and discussions, 

that would help make this technology a commercial reality. 

 

 

 

 

 

 

 


