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Summary

The world is generating exponentially increasing amounts of digital information- each day 2.5
quintillion bytes of data are created, captured, and consumed, and this number is only projected to
grow with the proliferating internet-of-things, and the emerging artificial intelligence. The data needs
to be processed fast and efficiently, and has necessitated new thinking about how our computers must
fundamentally work. In FunCOMP, we are working towards overcoming the fundamental limitations of
our conventional sequential electrical computing by designing a parallelized photonic in-memory
computing (or memcomputing) architecture using phase-change memory arrays and coherent on-chip
frequency combs. We harness the distinct property of light: wavelength division multiplexing, to
execute matrix-vector multiplication operations in parallel and experimentally demonstrate a photonic
tensor core capable of operating at Tera-Multiply-Accumulate (TMAC)/s speeds. In this report, we
discuss our photonic memcomputing architecture, and we showcase a demonstrator example of a highly
energy-efficient and fast convolutional processing engine for image detections in demanding Al
applications.
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1. Introduction and background

In the early 1900s, Alan Turing conceptualized with adequate mathematical proof a hypothetical
system he called the universal computing machine. What he was alluding to at that time is the present-
day computer: a machine by definition capable of storing, communicating, and computing data. In
their earliest implementations, computers executed fixed algorithms, performing simple calculations,
and lacked the ability to be restructured for dynamically changing and diverse tasks. As the demand
for computation and reprogramming grew, came the concept of a von Neumann architecture, proposed
by John von Neumann, a decade after Turing’s proposal. The architecture physically separates the
computational, or the central processing unit (CPU), from the memory unit, so enabling re-
programmable logical and computational operations. The very requirement to shuttle data back and
forth between the CPU and memory incurs tremendous costs on energy, and latency (delays), which in
the recent past have turned into troublesome computing bottlenecks. The ‘memory wall’ bottleneck, for
example, is a result of the finite bandwidth at which data can be moved across the interconnects and
be accessed at the memory. This means even with the fastest imaginable processors, the computation
throughput would decisively be governed by the data transfer speeds, resulting in the processor
spending a lot of time being idle. This disparity between the data demand and supply at the CPU,
defined by bits per second, is only widening as processors are getting faster, and while many computer
performance metrics have exponentially improved in the 40 years of the semiconductor technology,
the latency that defines the time it takes to access and compute data from the memory has improved
far less dramatically. Similarly, the energy expenditure on accessing and shuttling data has become
strikingly large compared to energy spent on the computation itself.

Motivated to overcome these growing limitations, in the Fun-COMP project, we have set out to
create novel computer architectures that can radically redefine computing from being compute
(processor) centric (the von-Neumann architecture) to data (memory) centric. Our approach also
substitutes electricity with light, such that information gets represented, transferred, and computed as
optical signals, in a framework that we refer to as photonics memcomputing. Such a scheme provides
extremely low latencies and a very large computational throughput, the latter a result of the ability
to use wavelength division multiplexing (WDM) to carry out parallel computations. Our research
importantly leverages the recent advances in integrated photonics, including hybrid integration of
soliton microcombs at microwave line rates, ultra low-loss silicon nitride waveguides, and high-speed
on-chip detectors and modulators. To that end, we have demonstrated a highly parallelized, fast, and
scalable integrated photonics accelerator — a form of photonics co-processor (or photonics tensor
processor core — TPU). Such first-of-its-kind hardware can be considered as the optical analog of an
application-specific integrated circuit, that is capable of operating at speeds of trillions of multiply-
accumulate (MAC) operations per second (102 MAC operations per second or tera-MACs per second).
We will briefly describe this technology in this article.

Note also that because of the impact and technological significance our Fun-COMP photonic
memcomputing technology for fast-emerging Al applications, we brought together a round-table of
leading experts to critically discuss these advances, and to draft a research road-map. What this
naturally resulted in is a cross-disciplinary engagement to communicate the ideas and discoveries to
the wider public, and research audience, in the format of a comprehensively detailed book. In this
book, which is due for publication in late-2021, we take a ground-up approach in elaborating the
concepts, from device fundamentals to systems design. Details of the book will be posted in the Fun-
COMP website (www.fun-comp.org) post publication
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2. Discussion
Photonic Memcomputing:

Our all-optical information processing benefits from all-optical memory solutions that do not require
detours through electronic circuitry, thus eliminating energy-inefficient electro-optical conversion
operations. To that end, we utilize phase-change materials (PCMs) for photonic memory elements.
PCMs provide strong optical contrast in the refractive index when reversibly switched between the
amorphous and crystalline phase states, representing the logical states. In the crystalline PCM state,
most of the incoming light is absorbed, representing for example a “0”. In the amorphous state, most
of the light is transmitted, thus representing a “1”. Intermediate transmission states can be chosen by
controllably switching fractions of amorphous and crystalline material in the PCM cell. The switching
process can be induced with optical laser pulses on a picosecond timescale and thus allows for ultrafast
operation of PCM-photonic devices. The change in refractive index is a broadband optical property
of PCMs, and therefore such memory elements can be addressed in a wide wavelength range. In
particular, this includes the 1500-1600 nm IR range and so makes the integration into the silicon
photonics platform as a building block feasible and highly attractive. This enables the PCM-based
photonic memories to be directly operated with other required active elements (lasers, optical
amplifiers, modulators, detectors) in the form of a scalable photonic integrated circuit (a PIC).

Such PCM-memories allow for implementing cumulative data storage and thus are highly
attractive for realizing in-memory computing applications. Particularly attractive about this concept is
the possibility to transfer computationally expensive operations from the electronic domain to the
photonics domain, where ultrafast modulation speeds and reduced latency are readily available. This
concerns especially essential computing operations in artificial neural network implementations and
which limit the system performance in terms of speed and energy efficiency - such as matrix-vector
multiplications (MVMs). Additionally, because of the broadband operation window, such PCM memory
cells can be combined with wavelength division multiplexing (WDM) strategies. This feature allows
parallel access in the frequency domain as a route for upscaling both computational capacity as well
ds memory access. This way the same memory cell can be read out in parallel at multiple wavelengths,
and these parallel signals can act as inputs to photonic neuromorphic hardware. This is especially
attractive for realizing ultrahigh bandwidth MVM systems in a fully integrated format. Such systems
can be employed for range of applications that fall under the categority of mixed-precision
computing. One such application is solving systems of linear equations Ax = b. Here an iterative
refinement algorithm is used, whereby an initial solution is chosen as the starting point, and is iteratively
updated with a low-precision error-correction term, z. The error-correction term is computed by solving
Az = r inexactly, using the residual r = b-Ax, calculated with high precision. Another arguably more
impactful application domain is deep learning inference where the MVM systems are used to
implement (albeit with reduced precision) the MVM operations associated with each synaptic layer in
a deep neural network (DNN). The other operations such as nonlinear activations are implemented in
high precision in a digital processor.

A particularly attractive DNN for mixed-precision deep learning is convolutional neural networks
(CNNs) (Nature 589, 52-58 (2021)). CNNs are highly effective for applications such as image
classification, autonomous navigation, and audio analysis in the frequency domain. In state-of-the-art
CNNs, many convolutional “hidden layers” are applied to an input signal before feeding the processed
data to fully connected layers for classification (i.e. for ouput generation). Each of the convolution
layers takes in an input image, performs convolutional operations (with a filter or ‘kernel’) to extract
features, and generates an output image. To perform each convolution operation, a filter is passed
over the input image inspecting a small window of pixels at a time. These filters are relatively small
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even for state-of-the-art CNNs, and hence an MVM photonic processor based on photonic PCM-cells
was developed to implement these convolution layers in a CNN. Importantly, through WDM capability,
we are able to efficiently parallelize several convolution operations within the confines of the same
Fun-COMP photonic processor, thus achieving significant savings on computational time and space
complexities (see Figure 1).
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Figure 1. An lllustration of a convolution neural network, with multiple densely connected convolution layers.
Each of the convolution layers takes in an input image, performs convolutional operations (which are matrix-
vector or MAC operations) with pre-defined filters to extract features, and generates an output image to fully
connected layers for classification. The bottom panel is a comparison of digital and analog electronic
architectures with our photonic tensor core architecture, for purposes of MAC operation. Digital electronics
(left) require many sequential processing steps distributed across multiple cores to compute convolutional
operations on an image, whereas an entire MVM can be performed in one step using analog electronic in-
memory computing (center). Photonic in-memory computing (right), using wavelength multiplexing as an
additional degree of freedom, enables multiple MVM operations in a single time step, alongside the data-
transfers at the speed of light.

Key Results:

In our memcomputing based all-optical neural network, the synaptic matrix weights are implemented
in the PCM-memory cells, based on Ge2SbaoTes chalcogenide phase-change material. The memory cells
are operated in a transmission modulation mode, where the optical output power is regulated in a
non-volatile manner depending on the PCM structural state (amorphous-crystalline volume fraction),
where the PCM cells are optically programmed with high precision for differing transmission states. By
arranging multiple PCM memory cells in an interconnected matrix form, the photonic analog of
electronic crossbar array, or matrix, is realized on-chip (see Figure 2a). The matrix is designed as a
waveguide crossbar array with directional couplers that equally distribute the input power to all PCM-
cells. By using different wavelengths, interference inside the waveguides can be avoided and the
summation of the individual products (of the matrix-vector multiplications) can be performed by adding
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the light to the output waveguides, also by using directional couplers. This way the optical power at
the output comprises the input optical power weighted by the programmed states (levels) of the PCM-
memory cells, thus directly encoding the computationally expensive multiply-accumulate (MAC)
operation (that lies at the heart of convolution processing) in the optical domain. We verified the
applicability of such a concept using a suite of simulations and experimental trials, before arriving at
an optimal design. The photonic circuits were fabricated using a three-step electron-beam lithography
process on a silicon nitride on silicon oxide on silicon wafer. The complete circuit was designed using
FDTD method and GDShelpers, a design framework for integrated photonic circuitry. The key chip
regions are magnified in the optical micrographs shown in Figure 2b. The coupling of light into the
optical chip is achieved using broadband total internal reflection (TIR) couplers. The TIR couplers
provide access to a wide wavelength spectrum and thus allow the coupling of multiple wavelengths
into the chip. The PCM-cells (of area 3X3 Um?) acting as the matrix elements are deposited on top of
waveguide crossings. Each matrix cell can be optically switched for programming each matrix element
(in this case the light is coupled to the chip using Bragg-grating couplers because operation at a single
wavelength (1550 nm) is sufficient).

In a conventional CNN, to a convolution layer input images of dimension nXn and di, channels
are fed, where the channel may represent the color tones (red, green, and blue). If there are dou
convolution kernels of size kXk, each convolutional filter is of dimension kXkXdi, and the resulting
output image is of dimension (n-k+1)X(n-k+1) with doyt channels. To perform each convolution
operation, a filter is passed over the input image inspecting a small window of pixels at a time. A
pixel-wise MAC operation between the filter and the current filter window is carried out to calculate
a single pixel of the output image. This corresponds to (n-k+1)2Xk2Xd;,Xdost MAC operations per
convolution layer, leading to a significant computational bottleneck. In order to build efficient
hardware to perform the convolution operations, one approach is to combine all the convolutional
filters into a large filter matrix. The filter matrix will be of dimension (k2Xdi,) X dout. It is constructed
by stacking the kernel matrices into the columns of the final filter matrix. In the same way, the pixels
of the input image are rearranged by stacking the pixels of the filter volume, (kXkXd,), into the rows
of the input matrix. Hence a single convolution operation involves (n-k+1)2 such MVM operations
between the filter matrix and the input vectors of k2Xd;, dimension. In the electronic domain, these
MVM operations are typically multiplexed in time with parallelization afforded only by physically
replicating the filter matrix (i.e. physically replicating the hardware). In this work, we exploit the optical
WDM to overcome this fundamental limitation by encoding multiple input vectors of dimension k2Xdj,
onto multiple lines of a coherent frequency comb. These optical input vectors can then be applied to a
single (k2Xdin) X dout filter matrix simultaneously, thus eliminating duplicated physical hardware and
sequential operations.

To illustrate the convolutions in the optical domain experimentally, we show in Figure 2c
examples of processing four input vectors in parallel, for edge detection. In this case, four pixels of
the input image (in the top panel, the Waterloo underground station logo, and in the bottom panel, a
Zebra) are obtained per image kernel simultaneously, therefore shortening the processing time by a
factor of four. The kernel size used for this experiment is 2X2 and the input dimension of the image,
din = 1, leading to a 4X4 filter matrix. The convolutions highlight the different edges (orientations
(horizontal /vertical)) which can be seen, for example in the representation of the bricks in the Waterloo
Logo. We also experimentally performed the task of MNIST (a commonly utilized benchmarking
database) digit recognition with a CNN, as illustrated in Figure 2d. The CNN employed in our
experiments consists of the input layer taking the pixel data (28x28 pixels, single-channel) that is then
passed to a convolution layer consisting of four 2x2 kernels plus subsequent Rectified Linear Unit (ReLU)
activation, resulting in an output of dimension 27x27x4 (valid padding). The output from the
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convolution step is flattened and fed to a fully-connected layer with ten neurons. The probabilities for
every digit are obtained from the final classification using the softmax function. The network was
trained via software and the weights of the filter kernels were programmed to the states of the PCM-
cells in the on-chip matrix. The experimental implementation of the CNN reached an accuracy of
95.3% showing good agreement with the calculated prediction accuracy of 96.1%. To estimate the
ultimate performance capabilities of the system, we explored the scaling capabilities in terms of matrix
size, modulation speed, and the number of parallel vectors.
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Figure 2. (a) lllustration of a FunCOMP photonic architecture to compute convolution operations. A laser
generates a broadband frequency comb. Individual comb teeth that form the input vectors are modulated at
high speeds, multiplied with a matrix (crossbar) of non-volatile phase-change memory cells, and summed
along each column on a photodetector. Every column of the crossbar encodes a convolution filter or kernel. (b)
Optical micrograph of a fabricated 4X4 matrix with 3D printed input and output couplers to enable
broadband operation. The close-up SEM images on the right show the 3D printed couplers (bottom) and the
waveguide crossings with the PCM (top) in more detail. (c) Convolution using parallel MVM operations. The
original input images are shown on the left and to the right the output images using four different edge
detection image kernels. The size of the four image kernels is 2X2 corresponding to a 4X4 filter matrix. In
each time step, four input vectors are processed simultaneously via wavelength division multiplexing. (d) The
layer structure of a convolutional neural network used to test the photonic tensor core with the MNIST
database for digit recognition.

Benchmarking projections show that our Fun-COMP memcomputing hardware has a MAC rate
that is (i) around ten to twenty times faster than modern electronic CPUs, GPUs, etc. (including ~30
times faster than Google’s work-horse TPU), (ii) many orders of magnitude faster than electronic
neuromorphic implementations (e.g. 1000 times faster than HICANN) and (iii) as fast as other photonic
neuromorphic systems currently in development. Moreover, the energy consumed per MAC using the
Fun-COMP approach is already ‘best in class’ (e.g. at 0.04 pJ some 500 times less than state-of-art
GPUs and 5000 times lower than HICANN) and the computational density is (in spite of the relatively
large size of integrated photonic components) also projected to be better than all other relevant
technologies. These are some remarkable improvements, given this is only the first instance of our
demonstration of this exciting new technology. More importantly, such an approach more broadly
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suggests that integrated photonics are coming of age and in some cases can begin to match and even
challenge electronic computation.

3. Conclusions and next steps

The memcomputing technologies developed in the Fun-COMP project have the potential to perform
data processing with orders of magnitude higher speed than any other state-of-the-art techniques,
thus achieving (even exceeding) the goals set on the roadmap set for Al hardware. Our demonstrations
of convolutional processing on a photonics memcomputing engine are an exemplary showcase of such
technologies, that show promise to remove the computing bottleneck in modern machine learning
applications. There are, as with any promising technology however, important challenges to discuss
and tackle. For example, neural network based accelerators commonly have hundreds of millions of
parameters, thus for photonic technologies to be commensurate, the scaling challenge must be
overcome (i.e. large-scale PCM-based PICs need to be designed and fabricated). Similarly, R&D
directions must be laid in solving input-output challenges, which will require efficient on-chip electro-
optical converters, temperature controllers, and power supplies. This will most likely be enabled by
the co-integration of PICs with CMOS. Newer optical components and materials will be needed too,
both for more efficient processing, as well as for more specific data-processing units, such as non-linear
thresholding for fully-connected layers. Among other things, these are some very interesting aspects
that we aim to explore and discuss in the remainder of the Fun-COMP project. We will also work
toward conceiving system-level architecture based on Fun-COMP MVM photonic processors to execute
end-to-end Al workloads. We will more rigorously benchmark the figures-of-merits, and henceforth
optimize the various variables in achieving the optimal performance in data processing speed,
bandwidth, and computational energy, first through a suite of simulations and then experimentally.
We will also thoroughly assess the fabrication costs, scalability, and challenges for system deployment
of optical memcomputing technologies in an industrial environment. Such an assessment will be done at
the end of the Fun-COMP project. While we add to our demonstration of an optical convolutional
neural network-based, we will also research newer concepts, tailored critically for such photonic
memcomputing processors. An immediate research goal is to project a few important brain-inspired
algorithms onto our hardware, for the task of sequential learning. We will aim to show how, much like
the human brain, the photonic hardware could detect patterns and find correlations in live video
processing, for important applications such as autonomous driving. Whilst engaged in achieving this
research goal, we will also put together comprehensive reports (via journal and conference
presenations, as well as Fun-COMP public deliverables) of the fundamentals, advances, and
opportunities relating to our technology so that more and more research groups and industrial firms
indulge. We hope that a concomitant slew of interest would result in research advances and discussions,
that would help make this technology a commercial reality.



